CORDIS - EU research results
CORDIS

Hyperconnected Architecture for High Cognitive Production Plants

Project description

A digital boost for cognitive manufacturing

Increasing production and decreasing environmental damages is a key target in the digital transformation of production plants. The EU-funded HyperCOG project proposes an advanced industrial cyber-physical system (ICPS) that will increase production performance, limit emissions and energy consumption, and offer lifelong training in digitalisation for workers. The system is built on technological advances accessible in the market. It offers a hyper-connected network of digital nodes that can receive considerable streams of data in real-time. As a result, it can supply industrial plants with awareness and cognitive reason. The impacts of the system on productivity and environment will be verified on three use cases included in the SPIRE scope – in the steel-making, cement and chemical sectors.

Objective

HyperCOG project “HYPERCONNECTED ARCHITECTURE FOR HIGH COGNITIVE PRODUCTION PLANTS” addresses the full digital transformation of the process industry and cognitive process production plants through an innovative Industrial Cyber-Physical System (ICPS). It is based on commercially available advanced technologies, that will enable the development of a hyper-connected network of digital nodes. The nodes can catch outstanding streams of data in real-time, which together with the high computing capabilities available nowadays, provide sensing, knowledge and cognitive reasoning to the industrial business.

Furthermore, HyperCOG is deeply grounded in the last advances in Artificial Intelligence such as modelling for twin factories, decision-support systems for human-machine interaction and augmented reality for industrial processes visualization. It pursues self-learning from the process in order to deal with the typical dynamic fluctuations of the industrial processes and global optimization.
The objective is to increase the production performance while reducing the environmental impact by reducing the energy consumption and the CO2 emissions thereof. Society will get profit of this project not only throughout the environmental impact, but through the lifelong learning of workers and vocational training for digitisation, and the available training modules for youth at schools such as ESTIA technological institute or U-PEC University.

The breaking-edge system proposed in HyperCOG project will be validated on the productivity and environmental impacts, replicability and usability aspects on three use cases belonging to the SPIRE scope such us SIDENOR (steel making), CIMSA (cement), and SOLVAY (chemical) use cases.

Call for proposal

H2020-NMBP-ST-IND-2018-2020

See other projects for this call

Sub call

H2020-NMBP-SPIRE-2019

Coordinator

LORTEK S COOP
Net EU contribution
€ 1 031 875,00
Address
ARRANOMENDIA KALEA 4 A
20240 Ordizia
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost
€ 1 031 875,00

Participants (14)