Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

POLARITY AND SUBCELLULAR DYNAMICS IN PLANTS

Objective

Plant life strategy is marked by acquisition of highly flexible development that adapts plants’ phenotype to the environment. Various environmental signals are integrated into the endogenous signalling networks involving the versatile phytohormone auxin. The intercellular auxin transport mediates a large variety of adaptive plant growth responses. Subcellular polar distribution of PIN auxin transporters determines directionality of auxin flow and thus have potential to integrate internal and external signals via the redirection of auxin fluxes and translate them into modulation of development. Auxin transport thus represents a unique model for studying the functional link between basic cellular processes, such as vesicle trafficking and cell polarity, and their developmental outcome at the level of the multicellular organism.
We will employ approaches of cell biology, molecular genetics and chemical genomics in Arabidopsis thaliana to identify the cellular and molecular mechanisms regulating the directional throughput of auxin flow a integration of environmental signals into subcellular dynamics of PIN auxin transporters as well as endogenous feed-back regulations of this mechanism.
In our proposal, we will focus on four main research directions.

1. Novel regulators of cell polarity identified by chemical genomics
2. Cellular mechanisms of cell polarity maintenance
3. Integration of signals into subcellular dynamics of auxin transport
4. Mathematical modelling of regulatory circuits for adaptive development

The results will demonstrate the viability of genetics approaches for addressing cell biological questions in plants, open new horizons in plant cell biology and plant hormone fields and inspire researchers also in non-plant fields. The expected output has clear application potential for targeted modulation of plant development. The project will further strengthen our position of world-leading laboratory in plant hormone and plant cell biology fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
EU contribution
€ 1 268 855,32
Address
Am Campus 1
3400 KLOSTERNEUBURG
Austria

See on map

Region
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0