Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Modelica Model Library Development for Media, Magnetic Systems and Wavelets

Objective

The modelling language Modelica and libraries based upon it are excellently suited for model-based design of future aircraft systems, e.g. more electric aircraft or sustainable air-conditioning systems. To enable those design tasks, Modelica Libraries for media models, electromagnetic devices such as transformers and electrical machines and for wavelet analysis shall be developed or extended by a consortium of three partners.
XRG Simulation will provide two fluid property models according to the Modelica.Media specification, one model for R134a and one model for humid air. Both models shall be used for complex air conditioning system simulation e.g. of aircraft.
Technische Universität Dresden, where the Modelica.Magnetic.FluxTubes library was originally developed, will extend this library with hysteresis models. Simulation of static (ferromagnetic) and dynamic (eddy current) hysteresis allows for estimation of iron losses in transformers and electrical machines and hence, e.g. for subsequent simulation of heating.
In addition, Modelica models of one- and three-phase transformers will be developed. Compared to the simple transformer models already included in the Modelica Standard library, the models to be developed include a transformer’s magnetic subsystem and hence consider saturation and core losses. The developed hysteresis and transformer models will be validated with in-house measurements.
Furthermore, the Modelica.Magnetic library will be extended by electrical machine models based on look-up tables. These models allow for dynamic simulation of machines with saturation and non-linear torque-current-angle characteristics.
Technische Universität München will develop a Modelica Wavelet library for capture, identification and analysis of processes. This library will allow new signal processing methods for analysis, reconstruction and modelling of signals. That will improve the power quality assessment in physical systems, e.g. in electrical systems of aircraft.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

SP1-JTI-CS-2011-01
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

TECHNISCHE UNIVERSITAET DRESDEN
EU contribution
€ 108 376,80
Address
HELMHOLTZSTRASSE 10
01069 DRESDEN
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (2)

My booklet 0 0