Objective
                                "Plasmonics is a hot and rapidly expanding research field. Of particular interest is the localized surface plasmon resonance (LSPR) observed in noble metal nanocrystals (NCs). It leads to strong light scattering and enhanced light-matter interaction. However, the LSPR of metal NCs is restricted to visible wavelengths, unless multipole resonances are enhanced via shape engineering of the NCs.
Recently, two papers were published showing that copper-deficient semiconductor Cu2-xS(e) NCs can also exhibit a strong LSPR, in the near-infrared (NIR) spectral region. This exciting result both pushes the LSPR to longer wavelengths and allows plasmonics using semiconductor materials, which are transparent near the LSPR wavelength.
The project aims at expanding this new field by focusing on the fabrication of a NIR photovoltaic cell with enhanced performance. This is achieved through incorporation of NIR plasmonics NCs,  which allow improved absorption in the active layer via strong light scattering in NC thin film and an enhancement of the electric field near the NC surface. Two crucial steps need to be taken to achieve our goals. First, we need to further develop the synthesis of novel NIR plasmonic NCs. The focus lies here on a tuning of the spectral position and width of the LSPR by varying the Cu2-xS(e) material composition, size and shape, in order to optimize the NC scattering cross section and field enhancement at the desired NIR wavelength. Second, strategies will be developed to incorporate the plasmonic NCs into novel NC-based thin film photovoltaic cells. The device performance will be evaluated with and without plasmonic NCs, for different thin film configurations, in order to quantify the efficiency enhancement.
Considering that our devices combine an improved absorption with an expansion of the photovoltaic response into the NIR, we expect that NC-based photovoltaics can offer a viable low-cost alternative to current solar cell technologies."
                            
                                Fields of science (EuroSciVoc)
                                                                                                            
                                            
                                            
                                                CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See:   The European Science Vocabulary.
                                                
                                            
                                        
                                                                                                
                            CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials nanocrystals
- engineering and technology materials engineering coating and films
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- medical and health sciences medical biotechnology cells technologies
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
    Programme(s)
    
      
      
        Multi-annual funding programmes that define the EU’s priorities for research and innovation.
        
      
    
  
      
  Multi-annual funding programmes that define the EU’s priorities for research and innovation.
    Topic(s)
    
      
      
        Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
        
      
    
  
      
  Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
      Call for proposal
      
        
        
          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
          
        
      
    
          Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
        FP7-PEOPLE-2011-IEF
          
            See other projects for this call
          
      
    Funding Scheme
    
      
      
        Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
        
      
    
  
  
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
16163 GENOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.
 
           
        