Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-27

On the Chemical Evolution of Proto-Bioenergetic Systems

Cel

Contemporary biochemistry exploits condensed polyphosphates (e.g.: adenosine triphosphate, ATP) to drive metabolic processes. However, it is unlikely that such molecules emerged a priori from an abiotic environment as their synthesis and use requires the presence of sophisticated & complex protein catalysts. We propose that more primitive P-based chemicals pre-dated ATP, chemicals which (i) emerged readily from prebiotic environments, (ii) were capable of performing valuable (in the context of an emerging living system) chemical reactions and (iii) had the ability to evolve chemically into peptide-catalysed polyphosphate-based systems more common to contemporary life.

We have identified a candidate P-based chemical pyrophosphite [PPi(III)] for which we have plausible prebiotic provenance. We will explore here the ability of PPi(III) to couple prebiotically available amino acids to peptides with potential value to an emerging system. We know that PPi(III) will couple glycine to diglycine but we intend here to explore the complete amino-acid coupling space using robotic, parallel processing, multi-well reader technology to probe PPi(III)-mediated di, tri and tetrapeptide formation. These libraries will then be examined, in a feed-back loop, for their abilities to catalyze the hydrolysis of PPi(III). The significance of this is that polypeptide catalyzed polyphosphate hydrolysis represents a primitive mimic for the activity of contemporary ATPase enzymes. We will then explore the ability of PPi(III) to evolve chemically into pyrophosphate [PPi(V)], a closer cousin to ATP, in the presence of PPi(III)-generated peptides and explore the abilities of the peptide libraries to accelerate chemical reactions of PPi(V). In this way, we aim to chart a chemical evolutionary pathway to peptide-activated P-based chemicals, the forerunners of ATPase enzymes, from plausibly prebiotic systems.

Zaproszenie do składania wniosków

FP7-PEOPLE-2011-IIF
Zobacz inne projekty w ramach tego zaproszenia

Koordynator

UNIVERSITY OF LEEDS
Wkład UE
€ 200 371,80
Adres
WOODHOUSE LANE
LS2 9JT Leeds
Zjednoczone Królestwo

Zobacz na mapie

Region
Yorkshire and the Humber West Yorkshire Leeds
Rodzaj działalności
Higher or Secondary Education Establishments
Kontakt administracyjny
Martin Hamilton (Mr.)
Linki
Koszt całkowity
Brak danych