Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Genetic and Phenotypic Modelling of Bacterial Evolution

Objective

The dramatic success of infectious agents comes from their ability to adapt to both immune and pharmaceutical selective pressures. To uncover the dynamics of bacterial adaptation, experimental evolution has been widely used, focusing mostly on organismal fitness. Many of the observation derived from these experiments have been captured by Fisher's Geometric model of Adaptation (FGMA). Despite its success, this top-down phenotypic model is relatively abstract. In fact, its most important parameter, the number of independent phenotypes an organism expose to the action of natural selection, or phenotypic complexity, remains completely disconnected from a genetic perspective. More recently, bottom-up genotype to phenotype maps from system biology have provided an alternative to unravel the constraints regulating bacterial evolution.
In the present project, I want to connect these different approaches. The interpretation of system biology models in terms of FGMA will (i) uncover the genetic determinants of phenotypic complexity, giving more genetic context to FGMA, and, (ii) transpose our understanding of evolution through FGMA to complex genotype to phenotype maps.
Four different levels of integration will be used: the gene, the metabolic network, the organism and the species. I will use
-antibiotic resistance gene, TEM1, to connect thermodynamic models of protein evolution to FGMA, and characterize the phenotypic complexity of a single gene,
-computational models of metabolic network and experimental modification of a biochemical pathway regulation to assess the meaning of phenotypic complexity in networks,
-in vitro and in vivo experimental evolution coupled with genome sequencing and mutant reconstruction to assess the molecular bases of changes in beneficial mutation rates during organismal adaptation,
- faeces of well characterised human twins to assess the factors of the human gut's environment that shape the genetic diversity of the Escherichia coli species.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-StG_20111109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
EU contribution
€ 1 485 600,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0