Objective
The dramatic success of infectious agents comes from their ability to adapt to both immune and pharmaceutical selective pressures. To uncover the dynamics of bacterial adaptation, experimental evolution has been widely used, focusing mostly on organismal fitness. Many of the observation derived from these experiments have been captured by Fisher's Geometric model of Adaptation (FGMA). Despite its success, this top-down phenotypic model is relatively abstract. In fact, its most important parameter, the number of independent phenotypes an organism expose to the action of natural selection, or phenotypic complexity, remains completely disconnected from a genetic perspective. More recently, bottom-up genotype to phenotype maps from system biology have provided an alternative to unravel the constraints regulating bacterial evolution.
In the present project, I want to connect these different approaches. The interpretation of system biology models in terms of FGMA will (i) uncover the genetic determinants of phenotypic complexity, giving more genetic context to FGMA, and, (ii) transpose our understanding of evolution through FGMA to complex genotype to phenotype maps.
Four different levels of integration will be used: the gene, the metabolic network, the organism and the species. I will use
-antibiotic resistance gene, TEM1, to connect thermodynamic models of protein evolution to FGMA, and characterize the phenotypic complexity of a single gene,
-computational models of metabolic network and experimental modification of a biochemical pathway regulation to assess the meaning of phenotypic complexity in networks,
-in vitro and in vivo experimental evolution coupled with genome sequencing and mutant reconstruction to assess the molecular bases of changes in beneficial mutation rates during organismal adaptation,
- faeces of well characterised human twins to assess the factors of the human gut's environment that shape the genetic diversity of the Escherichia coli species.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences thermodynamics
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics mutation
- natural sciences biological sciences genetics genomes
- medical and health sciences basic medicine pharmacology and pharmacy drug resistance antibiotic resistance
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-StG_20111109
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
75654 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.