Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Natural inorganic polymers and smart functionalized micro-units applied in customized rapid prototyping of bioactive scaffolds

Objective

The application of rapid prototyping techniques has become a new trend in the fabrication of customized scaffolds for tissue regeneration or repair. The aim of the proposed project is to provide novel solutions for bottle-neck problems currently faced in establishing the corresponding processing chain, which encounter, among others, the extraction of essential geometry data of the damaged tissue from medical images, e.g. CT and MRI, with a resolution sufficient enough to guide CAD/CAM-based materials manufacturing processes; the establishment of a feasible interfaces between medical imaging, CAD and CAM; and the fabrication, by rapid prototyping techniques, i.e. selective laser sintering, 3D printing and robocasting, of customized scaffolds based on an innovative morphogenetically active bio-inorganic polymer, bio-silica, either alone or in combination with another bio-inorganic polymer, bio-polyP, as well as smart micro-units. Customization of both external geometry and internal cellular architecture, and of the material properties of the scaffolds will be achieved. The main focus is the development of novel osteogenic scaffolds which obviate the need of exogenously added growth factors/cytokines in bone tissue engineering. The scaffolds made of the bioactive bio-inorganic polymers or their composites with traditional bio-ceramics will fulfil both mechanical and physiological requirements for the intended biomedical applications. In addition, this project will provide a new strategy for 3D printing of bone-forming cells by exploiting the unique advantages of cell-encapsulating bio-silica alginate hydrogels. The multidisciplinary consortium proposing this project comprises internationally top-ranked researchers in Europe and in China and includes an already established Joint Lab between European and Chinese partners providing the necessary infrastructure and competence to realize a fast integration and a proof-of-concept within the proposed 3-year funding period.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2013-EU-China
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

UNIVERSITAETSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAET MAINZ
EU contribution
€ 486 620,00
Address
Langenbeckstrasse 1
55131 Mainz
Germany

See on map

Region
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0