Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

FUTURE ATOMIC CLOCK TECHNOLOGY

Objetivo

During the last decades atomic clocks and frequency standards have become an important resource for advanced economies with impact ranging from satellite navigation (GPS, GLONASS, Galileo) to high speed communication networks, where they ensure synchronisation of data packets at ever higher bit rates. In this field the wake of the new millennium has been marked by the invention of frequency comb technology, a discovery so important that it was awarded the Nobel Prize in Physics in 2005. Femtosecond comb technology enables two major advances (i) a factor of 1000 improvement in sensitivity and accuracy over current atomic clock technology and (ii) the possibility to create a precision frequency synthesizer ranging from the Hz level up to 10^17 Hz or even higher, i.e. covering the electromagnetic spectrum from DC to the soft x-ray regime. The technological impact of this current development is likely to be tremendous, opening new applications, e.g. in “relativistic geodesy”, where ultraprecise clocks sense the gravitational potential via the redshift arising from general relativity. This might open new markets in oil and mineral exploration, supervision of CO2 sequestration and hydrology and climate research.
However the technologies associated with optical clocks and frequency standards are still in the laboratory stage and experts in the field are desperately needed for developing commercially viable systems and applications. This ITN is addressing this issue by implementing a training programme covering all aspects from the atomic reference and ultrastable lasers to frequency comb synthesis, precision frequency distribution and commercial system technology. It focuses on technological developments enhancing the technology readiness level of the new optical atomic clocks, enhancing the chance that they are picked up by the commercial sector. At this initial stage the vehicle will be space technology, which is promising the first high-precision applications.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Convocatoria de propuestas

FP7-PEOPLE-2013-ITN
Consulte otros proyectos de esta convocatoria

Coordinador

THE UNIVERSITY OF BIRMINGHAM
Aportación de la UE
€ 688 256,14
Dirección
Edgbaston
B15 2TT Birmingham
Reino Unido

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
Sin datos

Participantes (14)