Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Steering attosecond electron dynamics in biomolecules with UV-XUV LIGHT pulses

Objective

One of the challenges facing science is to understand the chemical origin of DNA damage-induced mutations. Upon exposure to UV light, DNA nucleobases become electronically excited. This process potentially favors mutagenic miscoding of the DNA sequence.
The main target of STARLIGHT is to study with unprecedented temporal resolution (few-femtoseconds/attoseconds) the electron dynamics occurring in UV photoexcited biomolecules. I will mainly consider aromatic complexes including DNA nucleobases (and ultimately DNA) with the aim of tracking in real time the electron dynamics preceding structural changes potentially leading to damage. The proposed research is based on a bottom-up approach: it allows one to understand the physical origin of a variety of light-driven processes occurring in more complex biological systems of crucial importance in photochemistry and photobiology, with tremendous prospects in phototherapy.
Electron motion in molecules occurs on a temporal scale ranging from few femtoseconds down to attoseconds. Attosecond science is nowadays a well-established field and electron dynamics has been successfully studied in atoms and small molecules. The work recently conducted by the PI has demonstrated that this technology is mature and ready to be applied to more complex systems such as biomolecules.
Electron dynamics will be resonantly activated in biomolecules by few-cycle UV pump pulses and subsequently probed by as-XUV pulses or few-fs-UV pulses. Through time-resolved measurements of the molecular photo-fragmentation, gas-phase spectroscopy will be used to elucidate the role of electrons in the photoreactivity of the molecule in a solvent-free environment. With the final goal of steering the electronic motion, circularly polarized UV pulses will be also used to induce electronic currents in cyclic biomolecules. These ring currents can be exploited to generate intense magnetic fields with promising applications in molecular electronics and quantum control.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 812 500,00
Address
NOTKESTRASSE 85
22607 HAMBURG
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 812 500,00

Beneficiaries (2)

My booklet 0 0