Objective
Image-guided needle procedures - such as taking biopsies in screening cancerous tumours - are becoming increasingly important in clinical practice. Today, physicians are severely hampered by the lack of precision in positioning the needle tip. Real-time tissue-characterization feedback at the needle tip during these procedures can significantly improve the outcome of diagnosis and treatment, and reduce the cost of oncology treatment. Spectral tissue sensing using photonic needles has the promise to be a valuable diagnostic tool for screening tumours, as shown by several clinical trials. However, for widespread adoption the cost and size of these photonic needle systems - in particular the spectrometer console - needs to be improved dramatically. The realization of a low-cost miniature system is limited by three key challenges:
• Broadband (VIS+NIR) illumination
• Broadband (VIS+NIR) sensitivity
• Integration of the system
InSPECT will address these challenges by developing and integrating photonic building blocks for low-cost miniaturized spectral tissue sensing devices. This involves the realization of a miniature broadband (400-1700 nm) solid-state light source, based on phosphor and quantum-dot converted LEDs, and the realization of a miniature low-cost integrated VIS+NIR spectrometer. For the spectrometer integration we will follow 2 approaches:
• The micro-spectrometer, a moderate risk approach based on the miniaturisation and monolithic integration of diffractive dispersive elements and VIS+NIR photo-detectors in a small volume (cubic inch) device, and
• The nano-spectrometer, a higher risk approach in which the spectrometer function is realized in a photonic integrated circuit (PIC) based on transparent SiO/SiN waveguide technology.
This is a unique, novel, and timely approach to realize the key photonics building blocks for low-cost miniature spectrometers that will drive the adoption of spectral sensing in applications that were not accessible before.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering fibers
- humanities languages and literature literature studies
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology materials engineering ceramics
- natural sciences physical sciences optics fibre optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.1.6. - Micro- and nanoelectronics and photonics: Key enabling technologies related to micro- and nanoelectronics and to photonics, covering also quantum technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5656 AG Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.