Objective
Imagine life without colour. Many of the rich layers of information in our visual world would disappear and simple tasks, such as finding a red apple in a tree, would be far more difficult. There are many examples of animals in nature that have limited colour vision, yet some have managed to develop high-performance eyes that, in some respects, far surpass our own visual capabilities. One of the ways that animals have achieved this is to make use of the polarization of light rather than colour. The reasons behind this are not understood and represent a novel area for scientific exploration.
Many animals have been shown to be sensitive to the polarization of light, but nearly all research to date has focussed on dedicated eye structures for detecting specific cues such as the polarized sky field for navigation (e.g. in honey bees, ants, and locusts). The recent discovery that some animals make use of a highly developed sensitivity to polarized light across the whole visual field of their image-forming eyes opens the way for new investigations into the use of polarized light for object detection and discrimination, a field previously dominated by the study of colour and intensity visual systems.
I have shown in recent investigations that fiddler crabs have highly-acute sensitivity to polarized light across their whole visual field. These animals have been model species for behavioural ecology research over the past 50 years and so represent an ideal organism for developing a clear understanding of image-based polarization vision. The central question of what has caused evolution, in the case of fiddler crabs, to develop high performance polarization vision rather than colour vision will be addressed at both the physiological and behavioural levels by asking the following two broad questions:
Q1 – How is polarized light information processed in the nervous system of fiddler crabs?
Q2 – How do fiddler crabs use polarized light information in their natural environment?
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences ecology
- natural sciences biological sciences zoology entomology apidology
- natural sciences computer and information sciences artificial intelligence computer vision object detection
- natural sciences biological sciences biological behavioural sciences behavioural ecology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU Bristol
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.