Project description
Breaking the Shockley-Queisser efficiency barrier in PVs
The Shockley-Queisser (SQ) limit is a long-standing issue in the photovoltaic (PV) industry, setting the maximum efficiency for silicon PV cells at about 30 %. This limit arises from two constraints: energetic photons lose most of their energy to heat during conversion, and PV cannot harness photons below its bandgap. However, the European Research Council-funded ThforPV project will propose a new solution to overcome this problem. Through entropy-driven up-conversion of low-energy photons such as thermal radiation, it aims to push the potential efficiency above the SQ limit, potentially leading to disruptive innovation in photovoltaics. Experimental results show a 10-fold up-conversion of 10.6 micrometre excitation to 1 micrometre at internal efficiency of 27 % and total efficiency of 10 %.
Objective
"The Shockley Queisser (SQ) limits the efficiency of single junction photovoltaic (PV) cells and sets the maximum efficiency for Si PV at about 30%. This is because of two constraints: i. The energy PV generates at each conversion event is set by its bandgap, irrespective of the photon’s energy. Thus, energetic photons lose most of their energy to heat. ii. PV cannot harness photons at lower energy than its bandgap. Therefore, splitting energetic photons, and fusing two photons each below the Si bandgap to generate one higher-energy photon that match the PV, push the potential efficiency above the Shockley Queisser limit. Nonlinear optics (NLO) offers efficient frequency conversion, yet it is inefficient at the intensity and the coherence level of solar and thermal radiation.
Here I propose new thermodynamic concepts for frequency conversion of partially incoherent light aiming to overcome the SQ limit for single junction PVs. Specifically, I propose entropy driven up-conversion of low energy photons such as in thermal radiation to emission that matches Si PV cell. This concept is based on coupling ""hot phonons"" to Near-IR emitters, while the bulk remains at low temperature. As preliminary results we experimentally demonstrate entropy-driven ten-fold up-conversion of 10.6m excitation to 1m at internal efficiency of 27% and total efficiency of 10%. This is more efficient by orders of magnitude from any prior art, and opens the way for efficient up-conversion of thermal radiation.
We continue by applying similar thermodynamic ideas for harvesting the otherwise lost thermalization in single junction PVs and present the concept of ""optical refrigeration for ultra-efficient PV"" with theoretical efficiencies as high as 69%. We support the theory by experimental validation, showing enhancement in photon energy of 107% and orders of magnitude enhancement in the number of accessible photons for high-bandgap PV. This opens the way for disruptive innovation in photovoltaics"
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering thermodynamic engineering
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
- natural sciences physical sciences theoretical physics particle physics photons
- engineering and technology environmental engineering energy and fuels renewable energy solar energy concentrated solar power
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.