Project description DEENESFRITPL Breaking the Shockley-Queisser efficiency barrier in PVs The Shockley-Queisser (SQ) limit is a long-standing issue in the photovoltaic (PV) industry, setting the maximum efficiency for silicon PV cells at about 30 %. This limit arises from two constraints: energetic photons lose most of their energy to heat during conversion, and PV cannot harness photons below its bandgap. However, the European Research Council-funded ThforPV project will propose a new solution to overcome this problem. Through entropy-driven up-conversion of low-energy photons such as thermal radiation, it aims to push the potential efficiency above the SQ limit, potentially leading to disruptive innovation in photovoltaics. Experimental results show a 10-fold up-conversion of 10.6 micrometre excitation to 1 micrometre at internal efficiency of 27 % and total efficiency of 10 %. Show the project objective Hide the project objective Objective "The Shockley Queisser (SQ) limits the efficiency of single junction photovoltaic (PV) cells and sets the maximum efficiency for Si PV at about 30%. This is because of two constraints: i. The energy PV generates at each conversion event is set by its bandgap, irrespective of the photon’s energy. Thus, energetic photons lose most of their energy to heat. ii. PV cannot harness photons at lower energy than its bandgap. Therefore, splitting energetic photons, and fusing two photons each below the Si bandgap to generate one higher-energy photon that match the PV, push the potential efficiency above the Shockley Queisser limit. Nonlinear optics (NLO) offers efficient frequency conversion, yet it is inefficient at the intensity and the coherence level of solar and thermal radiation. Here I propose new thermodynamic concepts for frequency conversion of partially incoherent light aiming to overcome the SQ limit for single junction PVs. Specifically, I propose entropy driven up-conversion of low energy photons such as in thermal radiation to emission that matches Si PV cell. This concept is based on coupling ""hot phonons"" to Near-IR emitters, while the bulk remains at low temperature. As preliminary results we experimentally demonstrate entropy-driven ten-fold up-conversion of 10.6m excitation to 1m at internal efficiency of 27% and total efficiency of 10%. This is more efficient by orders of magnitude from any prior art, and opens the way for efficient up-conversion of thermal radiation. We continue by applying similar thermodynamic ideas for harvesting the otherwise lost thermalization in single junction PVs and present the concept of ""optical refrigeration for ultra-efficient PV"" with theoretical efficiencies as high as 69%. We support the theory by experimental validation, showing enhancement in photon energy of 107% and orders of magnitude enhancement in the number of accessible photons for high-bandgap PV. This opens the way for disruptive innovation in photovoltaics" Fields of science engineering and technologymechanical engineeringthermodynamic engineeringengineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generationengineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaicnatural sciencesphysical sciencestheoretical physicsparticle physicsphotonsengineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyconcentrated solar power Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-StG-2014 - ERC Starting Grant Call for proposal ERC-2014-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY Net EU contribution € 1 500 000,00 Address Senate building technion city 32000 Haifa Israel See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY Israel Net EU contribution € 1 500 000,00 Address Senate building technion city 32000 Haifa See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00