Skip to main content
European Commission logo print header

Imaging Brain Circuits to Decode Brain Computations: Multimodal Multiscale Imaging of Cortical Microcircuits to Model Predictive Coding in Human Vision

Description du projet

Examen plus approfondi sur les microcircuits du cerveau

Le cerveau humain est l’un des réseaux biologiques les plus complexes, mais son architecture et sa base computationnelle restent largement inconnues. Pour les chercheurs qui cherchent à comprendre la cognition humaine, il est difficile de développer des traitements efficaces pour les troubles neurologiques ou même des connaissances de base sur la façon dont le cerveau traite les informations. Dans ce contexte, le projet MULTICONNECT, financé par le CER, vise à percer les secrets du cerveau humain par le biais de l’imagerie de sa connectivité corticale à plusieurs échelles spatiales. À l’aide de l’IRM à des intensités de champ ultra-élevées, il étudiera la structure et la fonction des microcircuits corticaux humains afin de comprendre la base computationnelle de la cognition humaine. L’hypothèse de base est que les variations des calculs de codage prédictif dans les différentes zones visuelles sont fondées sur les variations de la connectivité des microcircuits.

Objectif

The human brain is one of the largest and most complex biological networks known to exist. The architecture of its circuits, and therefore the computational basis of human cognition, remains largely unknown. The central aim of this proposal is to image human cortical connectivity at multiple spatial scales in order to understand human cortical computations.
Whereas canonical cortical microcircuits are an established theory of the repeating structure of the neocortex’s circuits, predictive coding provides a prominent proposal of what these circuits compute. This leads to the core hypothesis of this proposal: the variations in predictive coding computations performed by human cortical microcircuits in different visual areas are grounded in variations in their microcircuit connectivity. As a central case-study, this proposal investigates human visual apparent motion perception in V1/2/3 and V5/MT+.
The proposed research program is organized in two workpackages (WP I and II). WP I has the aim of imaging the multiscale connections of human neocortical microcircuits. The projects in WP I focus on structure and move from the mesoscale down to the microscale. WP II has the aim of modelling how microcircuits support predictive coding computations. The projects in WP II focus on function and move from the microscale back up to the mesoscale. Structural and functional assessment of microcircuitry in the human brain only recently became possible with the development of magnetic resonance imaging (MRI) at ultra-high field-strengths (UHF) of 7T and above. UHF diffusion MRI, combined with light microscopy, is used to image circuit structure in WP I. UHF functional MRI is used for computational modelling of computations in WP II.
Successful completion of the planned research will significantly advance our understanding of the computations in cortical microcircuits, deliver important new human connectomic reference data, and improve generative models of human cortical processing.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITEIT MAASTRICHT
Contribution nette de l'UE
€ 1 500 000,00
Adresse
MINDERBROEDERSBERG 4
6200 MD Maastricht
Pays-Bas

Voir sur la carte

Région
Zuid-Nederland Limburg (NL) Zuid-Limburg
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 500 000,00

Bénéficiaires (1)