Project description
Atomic-level control of covalent bonding in supramolecular self-assembly on substrates
Guiding supramolecular self-assembly to yield innovative materials with tailored functionalities is an area of intense research with potential applications in advanced devices. However, until now, self assembly has primarily relied on non-covalent interactions. These relatively weak bonds limit the materials’ stability and potentially their functionality. Recent advances have led to the first covalently bonded organic networks synthesised directly on substrate surfaces under ultra-high-vacuum conditions. The European Research Council-funded SURFINK project will advance this promising nascent field by enhancing the control of atomic structure in three types of advanced materials: graphene nanoribbons, porous frameworks, and donor-acceptor networks. The team will also develop a characterisation toolbox focusing on scanning probe microscopies.
Objective
With the advent of self-assembly, increasingly high hopes are being placed on supramolecular materials as future active components of a variety of devices. The main challenge remains the design and assembly of supramolecular structures with emerging functionalities tailored according to our needs. In this respect, the extensive research over the last decades has led to impressive progress in the self-assembly of molecular structures. However, self-assembly typically relies on non-covalent interactions, which are relatively weak and limit the structure’s stability and often even their functionality. Only recently the first covalently bonded organic networks were synthesized directly on substrate surfaces under ultra-high-vacuum, whose structure could be defined by appropriate design of the molecular precursors. The potential of this approach was immediately recognized and has attracted great attention. However, the field is still in its infancy, and the aim of this project is to lift this new concept to higher levels of sophistication reaching real functionality.
For optimum tunability of the material’s properties, its structure must be controlled to the atomic level and allow great levels of complexity and perfection. Complexity can be reached e.g. with hybrid structures combining different types of precursors. In this project, this hardly explored approach will be applied to three families of materials of utmost timeliness and relevance: graphene nanoribbons, porous frameworks, and donor-acceptor networks. Along the pursuit of these objectives, side challenges that will be addressed are the extension of our currently available chemistry-on-surfaces toolbox by identification of new reactions, optimized reaction conditions, surfaces, and ultimately their combination strategies. A battery of tools, with special emphasis on scanning probe microscopies, will be used to visualize and characterize the reactions and physical-chemical properties of the resulting materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics microscopy
- engineering and technology nanotechnology nano-materials
- engineering and technology other engineering and technologies microtechnology molecular engineering
- engineering and technology materials engineering nanocomposites
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20018 Donostia San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.