Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Development of Molecular-defined Non-noble Metal Complexes and Nano-structured Materials for Sustainable Redox Reactions Development of Molecular-defined Non-noble Metal Complexes and Nano-structured

Objective

The major objective of this proposal is the development of new active and selective catalysts based on earth abundant metals (e.g. Fe, Mn, Co, Cu). These catalysts will be used for improved synthetic transformations which are of interest for organic chemistry in general and which are also of significant practical value for the chemical and life science industries. Traditional catalysts based on non-noble metals are not efficient for hydrogenation and dehydrogenation processes under mild conditions. However, by creating a suitable microenvironment with M-N interactions they are becoming active and selective. According to our concept the suitable surrounding will be created either by using nitrogen-containing pincer ligands or nitrogen-doped graphenes. Consequently, a variety of both molecular-defined homogeneous catalysts as well as nano-structured heterogeneous materials will be prepared, characterized and tested in various catalytic applications. More specifically, the following redox transformations will be investigated: Hydrogenation and transfer hydrogenation of carboxylic acids, esters, and nitriles; hydrogenation of amides and peptides; hydrogenation of carbon dioxide and selective oxidative coupling of alcohols to esters, amides, and nitriles. Furthermore, “waste-free” carbon-carbon bond forming reactions such as alkylations with alcohols and domino-synthesis of heterocycles from alcohols will be exploited. Finally, homogeneous and heterogeneous catalysts from earth abundant metals will be used in industrially relevant oxidative carbonylation reactions. With respect to methodology this proposal combines homogeneous with heterogeneous catalysis, which will result in new ideas for both fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-ADG

See all projects funded under this call

Host institution

LEIBNIZ INSTITUT FUER KATALYSE EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 375,00
Address
ALBERT-EINSTEIN-STRASSE 29A
18059 Rostock
Germany

See on map

Region
Mecklenburg-Vorpommern Mecklenburg-Vorpommern Rostock, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 375,00

Beneficiaries (1)

My booklet 0 0