Skip to main content

Development of Molecular-defined Non-noble Metal Complexes and Nano-structured Materials for Sustainable Redox Reactions Development of Molecular-defined Non-noble Metal Complexes and Nano-structured

Objective

The major objective of this proposal is the development of new active and selective catalysts based on earth abundant metals (e.g. Fe, Mn, Co, Cu). These catalysts will be used for improved synthetic transformations which are of interest for organic chemistry in general and which are also of significant practical value for the chemical and life science industries. Traditional catalysts based on non-noble metals are not efficient for hydrogenation and dehydrogenation processes under mild conditions. However, by creating a suitable microenvironment with M-N interactions they are becoming active and selective. According to our concept the suitable surrounding will be created either by using nitrogen-containing pincer ligands or nitrogen-doped graphenes. Consequently, a variety of both molecular-defined homogeneous catalysts as well as nano-structured heterogeneous materials will be prepared, characterized and tested in various catalytic applications. More specifically, the following redox transformations will be investigated: Hydrogenation and transfer hydrogenation of carboxylic acids, esters, and nitriles; hydrogenation of amides and peptides; hydrogenation of carbon dioxide and selective oxidative coupling of alcohols to esters, amides, and nitriles. Furthermore, “waste-free” carbon-carbon bond forming reactions such as alkylations with alcohols and domino-synthesis of heterocycles from alcohols will be exploited. Finally, homogeneous and heterogeneous catalysts from earth abundant metals will be used in industrially relevant oxidative carbonylation reactions. With respect to methodology this proposal combines homogeneous with heterogeneous catalysis, which will result in new ideas for both fields.

Field of science

  • /natural sciences/chemical sciences/organic chemistry/organic acids
  • /engineering and technology/nanotechnology/nano-materials
  • /natural sciences/chemical sciences/organic chemistry/alcohols
  • /natural sciences/chemical sciences/inorganic chemistry/metals
  • /natural sciences/chemical sciences/inorganic chemistry/organometallic chemistry
  • /natural sciences/chemical sciences/inorganic chemistry/inorganic compounds

Call for proposal

ERC-2014-ADG
See other projects for this call

Funding Scheme

ERC-ADG - Advanced Grant

Host institution

LEIBNIZ - INSTITUT FUR KATALYSE EV AN DER UNIVERSITAT ROSTOCK
Address
Albert-einstein-strasse 29A
18059 Rostock
Germany
Activity type
Research Organisations
EU contribution
€ 2 499 375

Beneficiaries (1)

LEIBNIZ - INSTITUT FUR KATALYSE EV AN DER UNIVERSITAT ROSTOCK
Germany
EU contribution
€ 2 499 375
Address
Albert-einstein-strasse 29A
18059 Rostock
Activity type
Research Organisations