Objective
Epithelial barriers protect the body against physical, chemical, and microbial insults. Intestinal epithelium is one of the most actively renewing tissues in the body and a major site of carcinogenesis. Functional in vitro models of intestinal epithelium have been pursued for a long time. They are key elements in basic research, disease modelling, drug discovery, and tissue replacing and have become prime models for adult stem cell research. By taking advantage of the self-organizing properties of intestinal stem cells, intestinal organoids have been recently established, showing cell renewal’s kinetics resembling to the one found in vivo. However, the development of in vitro 3D tissue equivalents accounting for the dimensions, architecture and access to the luminal contents of the in vivo human intestinal tissue together with its self-renewal properties and cell complexity, remains a challenge. The goal of this project is to engineer intestinal epithelial tissue models that mimic physiological characteristics found in in vivo human intestinal tissue, to open up new areas of research on human intestinal diseases. The proposed models will address the in vivo intestinal epithelial cell renewal and migration, the multicell-type differentiation and the epithelial cell interactions with the underlying basement membrane while providing access to the luminal content to go beyond the state-of-the-art organoid models. To do this, we propose to develop an experimental setup that combines microfabrication techniques, tissue engineering components and recent advances in intestinal stem cell research, exploiting stem cell self-organizing characteristics. We anticipate this setup to recapitulate the 3D morphology, the spatio-chemical gradients and the dynamic microenvironment of the living tissue. We expect the new device to prove useful in understanding cell physiology, adult stem cell behaviour, and organ development as well as in modelling human intestinal diseases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences basic medicine pharmacology and pharmacy drug discovery
- medical and health sciences clinical medicine gastroenterology inflammatory bowel disease
- medical and health sciences medical biotechnology tissue engineering
- medical and health sciences medical biotechnology cells technologies stem cells
- medical and health sciences clinical medicine cardiology cardiovascular diseases
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08028 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.