Objective
Cognitive control regulates our thoughts and actions, helping us avoid impulsive behaviours that are inappropriate, costly or dangerous. In recent years, evidence has emerged that training in behavioural tasks that promote response inhibition or avoidance of specific stimuli can enhance cognitive control, reducing overeating and alcohol consumption. Despite the promising nature of cognitive control training (CCT), we know little about which CCT methods are most effective, how individual differences determine training outcomes, whether CCT produces benefits for real-life behaviour, and how CCT alters – and is determined by – the structure and function of the brain. My aim is to discover what works in CCT and how the effects of training relate to neurophysiology. Subproject 1 will be the largest ever trial on the effectiveness of different CCT methods for achieving weight loss, recruiting 36,000 participants worldwide to complete an internet-based training programme via the Guardian. This study will reveal, with high statistical power, which CCT methods are the most effective and which individual differences are most important for producing real-life benefits. Subproject 2 will investigate how CCT influences neurobiology, and how individual differences in neurobiology influence CCT outcomes. In Subproject 2a, I will focus on theoretically predicted changes to GABAergic systems in prefrontal and motor cortex, and I will test the effect of GABAergic brain stimulation on training outcomes. In Subproject 2b, I will use concurrent brain stimulation (TMS) and brain imaging (fMRI) to test how CCT alters top-down coupling between prefrontal cortex and remote regions that mediate reward and emotion. I will also study how CCT alters, and is altered by, white matter microstructure. This project promises to advance understanding of the causal determinants and moderators of CCT, with implications for its suitability as a clinical adjunct in addiction therapy and behaviour change.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- social sciences psychology
- natural sciences chemical sciences organic chemistry alcohols
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CF10 3AT CARDIFF
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.