Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Semi-Artificial Photosynthesis with Wired Enzymes

Objective

Nature has been harnessing solar energy to drive endergonic life-sustaining reactions such as photosynthesis for billions of years. However, the overall biological processes are inefficient despite the evolution of efficient enzymes for carrying out specific reactions. Currently, there is an urgent need to develop superior strategies for the large scale conversion of solar energy into a renewable chemical fuel through artificial photosynthesis, which uses the same fundamental science as natural photosynthesis. Here we integrate the strengths of both natural and artificial photosynthesis to explore novel pathways for efficient solar-to-chemical conversion, which are otherwise inaccessible to either field alone.

In aim 1, we develop advanced materials and strategies for the rational integration of photosynthetic enzymes into photoelectrochemical cells. A platform will be established in which enzymes can be artificially coupled to light absorbers, and also be wired together to perform novel chemical reactions.

In aim 2, we adapt advanced analytical techniques, including scanning electrochemical microscopy and time-resolved spectroscopy, to gain mechanistic insights into the nature, extent, and mechanism of the enzyme-material interaction. This will aid rational cell design and shed light into reaction bottlenecks.

In aim 3, we wire the enzyme-electrodes together in rational combinations to arrive at novel and efficient pathways for performing solar-to-fuel conversions. We will demonstrate the efficient coupling of solar energy harvesting with water oxidation and proton/carbon dioxide reduction.

This integrated approach will lead the emergent field of semi-artificial photosynthesis beyond conventional solar fuels research. It will probe into the strengths and weaknesses of biological processes, and be used to explore how other processes (e.g. nitrogen fixation, C–H bond activation) can be more efficiently re-wired or be coupled to photochemistry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-CoG

See all projects funded under this call

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 960 289,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 960 289,00

Beneficiaries (1)

My booklet 0 0