Project description
Intersubband polaritons: paving the road to unprecedented optoelectronics
Optoelectronics integrates the use of electronics with the interaction between light and matter. It is blazing trails in optical communications, illumination, optical sensors and solar cells. Most optoelectronics devices rely on so-called weak coupling between light and matter. Strong coupling between the two can lead to the formation of cavity polaritons that are partially light and partially material excitation. In semiconductors, exciton-polaritons are the most widely studied type of strongly coupled system. Recently, a new type of excitation was discovered: intersubband polaritons. The EU-funded MIR-BOSE project intends to demonstrate their potential with completely new mid- and far-infrared optoelectronic devices based on intersubband polaritons and Bose-Einstein condensation.
Objective
Optoelectronic devices typically operate in the weak coupling regime between light and matter, for example in conventional lasers relying on population inversion to achieve optical gain. Recently there has been a surge of interest in quantum systems operating instead in the strong coupling regime, when the coupling strength of the light-matter interaction is so strong that new states – cavity polaritons – are created, that are partially light, partially material excitation. In semiconductors, exciton-polaritons have been the most widely studied type of strongly coupled system. Recently a new phenomenon has been realized exploiting intersubband transitions. The resulting excitations are called intersubband polaritons, and they have two remarkable properties: (i) a bosonic character that is maintained up to high carrier densities since they are not restricted by the Mott transition limit; (ii) large Rabi splittings. Although the scientific community has explored the basic science of intersubband polaritons, their potential for future and innovative optoelectronic devices has been entirely untapped.
The MIR-BOSE project will realize this potential, and demonstrate disruptive optoelectronic devices operating in the strong coupling regime between light and matter. We will demonstrate the first bosonic lasers operating in the mid-IR and THz ranges of the electromagnetic spectrum. Laser action here does not rely on population inversion, so we will achieve temperature independent operation and high powers. We will demonstrate a new concept of inverse-Q-switching leading to the generation of high power pulses in the mid-IR, overcoming severe bottlenecks in current technology. Finally, we will demonstrate non-classical/quantum light sources and devices, generating squeezed states of light in the mid-IR/THz spectral range for quantum optics. These new sources will have a major impact on several technologies and applications, being advantageous compared to current solutions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences optics laser physics ultrafast lasers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences quantum physics quantum optics
- natural sciences physical sciences optics laser physics pulsed lasers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91190 GIF-SUR-YVETTE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.