Objective
In the physics and chemistry of materials science, an intense focus of forefront research is the search for ever-smaller and ever-faster building blocks for information and communication technology (ICT) applications. The realization of next-generation devices, in ICT fields such as spintronics, spin-orbitronics and plasmonics, will depend decisively on our ability to generate new functionalities that can be actively controlled on the shortest length and time scales.
The groundbreaking idea of hyControl is to develop a conceptually new class of active ICT nano-scale materials by building functionality into the nano-scale object that naturally forms when an organic molecule is hybridized on a metallic surface: a nano-scale hybrid unit (NHyU). NHyUs will be realized by depositing selected organic molecules onto three classes of inorganic systems: transition metals; spin-textured materials such as Rashba systems and topological insulators; and magneto-plasmonic nano-structures. By tuning optical excitation to specific resonances, we will control the hybridization strength with ultrashort laser pulses, and thereby induce a coherent response in the spin, orbit, and/or electron degrees of freedom of the NHyU. Thereby we will achieve coherent control - at the molecular scale - of technologically important parameters, such as magnetization, plasmonic resonances, and spin texture. This hyControl concept will be implemented using a novel experimental method, spin- and phase-resolved orbital mapping, that is capable of resolving the transient spin-dependent electronic structure of precisely those valence band electrons which mediate the hybridization in a single NHyU.
While inspired by the latest achievements in molecular spintronics, hyControl will open the way to new technologies in various ICT applications, three of which - spintronics, spin-orbitronics, and plasmonics - have been selected to demonstrate the ability and versatility of optically controlled NHyUs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences electromagnetism and electronics spintronics molecular spintronics
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
44227 Dortmund
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.