Objective In the physics and chemistry of materials science, an intense focus of forefront research is the search for ever-smaller and ever-faster building blocks for information and communication technology (ICT) applications. The realization of next-generation devices, in ICT fields such as spintronics, spin-orbitronics and plasmonics, will depend decisively on our ability to generate new functionalities that can be actively controlled on the shortest length and time scales.The groundbreaking idea of hyControl is to develop a conceptually new class of active ICT nano-scale materials by building functionality into the nano-scale object that naturally forms when an organic molecule is hybridized on a metallic surface: a nano-scale hybrid unit (NHyU). NHyUs will be realized by depositing selected organic molecules onto three classes of inorganic systems: transition metals; spin-textured materials such as Rashba systems and topological insulators; and magneto-plasmonic nano-structures. By tuning optical excitation to specific resonances, we will control the hybridization strength with ultrashort laser pulses, and thereby induce a coherent response in the spin, orbit, and/or electron degrees of freedom of the NHyU. Thereby we will achieve coherent control - at the molecular scale - of technologically important parameters, such as magnetization, plasmonic resonances, and spin texture. This hyControl concept will be implemented using a novel experimental method, spin- and phase-resolved orbital mapping, that is capable of resolving the transient spin-dependent electronic structure of precisely those valence band electrons which mediate the hybridization in a single NHyU.While inspired by the latest achievements in molecular spintronics, hyControl will open the way to new technologies in various ICT applications, three of which - spintronics, spin-orbitronics, and plasmonics - have been selected to demonstrate the ability and versatility of optically controlled NHyUs. Fields of science natural sciencesphysical scienceselectromagnetism and electronicsspintronicsmolecular spintronicsnatural sciencesphysical sciencesopticslaser physics Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2016-COG - ERC Consolidator Grant Call for proposal ERC-2016-COG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator TECHNISCHE UNIVERSITAT DORTMUND Net EU contribution € 1 994 791,00 Address August schmidt strasse 4 44227 Dortmund Germany See on map Region Nordrhein-Westfalen Arnsberg Dortmund, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all TECHNISCHE UNIVERSITAT DORTMUND Germany Net EU contribution € 1 994 791,00 Address August schmidt strasse 4 44227 Dortmund See on map Region Nordrhein-Westfalen Arnsberg Dortmund, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00