Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Biomolecular Motor Systems: From Cellular Function to Nanotechnological Applications

Objective

This interdisciplinary project aims (i) to understand intracellular transport processes on a molecular level using novel nano-optical imaging tools and (ii) to use the insight from cellular systems to operate biomolecular motor systems in engineered environments for the fulfillment of complex nanotechnological tasks. Building on experience in optical microscopy and single molecule biophysics the research group will develop and apply nanotechnology-based tools to study the dynamical functioning of microtubule-based motor proteins in vitro and in vivo with nanometer resolution in three dimensions. These studies are expected to broaden the general knowledge about the design principles of molecular machines as well as the principles by which they interact with each other. This knowledge will - in return - pave the road for applications of these highly evolved transport machineries for a wide range of self-organizing nanofunctions in engineered environments. In contrast to conventional "macroscopic" top-down or "atomic" bottom-up approaches, a driving factor for this research is the capability of cellular machines to work in parallel, thus enabling the efficient fabrication and detection of nanostructures. The project will be strongly focussing on the interface between molecular cell biology and nanotechnology. With respect to the applied ERC funding, the project goals can be described by: Goal 1: Single-molecule studies on motor proteins using optical 3D-nanometer imaging, Goal 2: Investigation of cooperative effects in multi-motor transport, Goal 3: External control over transport systems in engineered environments, and Goal 4: Application of motor systems for nano-manipulation and nano-detection. Regarding the long-term goal, it is envisioned to let smart nanomaterials fulfill biological functions in cellular systems and to efficiently operate biomolecular machines in engineered environments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

TECHNISCHE UNIVERSITAET DRESDEN
EU contribution
€ 1 664 899,20
Address
HELMHOLTZSTRASSE 10
01069 Dresden
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0