Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nanopatterned scaffolds for active myocardial implants

Objective

Cell therapy and tissue engineering are emerging as novel therapeutic paradigms for myocardial repair. The rationale behind the cell replacement approach is based on the assumption that an increase in the number of functional cardiomyocytes within the diseased area may improve the mechanical properties of this compromised region. A common strategy attempts to initially combine, ex-vivo, cells with polymeric scaffolds to generate a construct, followed by in-vivo engraftment onto the heart muscle. Despite first encouraging results, the clinical utility of these approaches is hampered by the paucity of cell sources for human cardiomyocytes and by the limited direct functional integration of grafted cells and high degree of donor cell death following cell grafting in host myocardial tissue. NanoCARD will create a conceptually new type of biomimetic nanoscopically designed scaffold able to generate cardiac tissue replacement for the myocardium. Within our project we will design novel cellular environments with broad but precisely-controlled diversity in chemical composition, physical properties, and geometrical spacing of individual peptides on the nanometre scale. The capability of these environments to regulate cell response will be explored by high throughput approaches using a new chip technology developed within the project. An additional unique concept for controlling the function of cardiac cells is given by applying periodic mechanical strain in the range of heart frequency during the tissue engineering process. The knowledge gained within NanoCARD will be translated into the design and production of a novel biocompatible nanostructured device (therapeutic surface) with a desired bioactivity inducing specific behaviour of endothelial cells and cardiomyocytes to revolutionise treatment of myocardial defects. The inclusion of relevant companies in the consortium assures the identification of opportunities for the intended product developments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2008-SMALL-2
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU contribution
€ 794 600,00
Address
HOFGARTENSTRASSE 8
80539 Munchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (12)

My booklet 0 0