Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Design methods for Radio Architectures GOing Nanoscale

Project description


Design of semiconductor components and electronic based miniaturised systems
DRAGON develops a design platform and novel flexible RF architectures for SoC( Systems on Chip) and SiP (Systems in Package).

The DRAGON project seeks to achieve distinct reductions in cost, size and energy consumption for multi-standard cellular handsets, and other products employing similar technology, while meeting higher demands on data rate. Increased data rates require the energy consumption per transmitted or received data bit to be reduced, both to save energy and to avoid thermal problems. When successful, wireless data services become an attractive low-cost alternative for novel applications. Always connected should be an option for everyone. With increased integration levels and with a low thermal and energy budget, both system-in-a-package and system-on-a-chip become reality and, SMEs and other non-wireless European industries will be able to develop radio-based products and services. The driving idea behind DRAGON is to research and use new design methodologies and architectural innovation based on reconfigurability and state-of-the-art digital CMOS technology in order to break the barriers imposed by the lacking scaling properties of analog components. Radio transceivers serve as an exemplary case with high impact value. In DRAGON we will develop a design platform comprising multi-standard (EDGE, WCDMA, LTE, and, 4G) transceiver specifications and novel flexible architectures as a tool to meet them. The number of required external components, like analog filters, will be reduced by the use of reconfigurable digital CMOS circuitry; and critical building-blocks will be implemented to demonstrate proof of concept, both of the architecture and design methodology, including a highly linear combined channel filter and receive ADC, RF digitisation receiver, a transmitter DAC, a switched-mode PA with adaptive digital predistortion and adaptive matching networks. All critical building-blocks will be fabricated, tested, and demonstrated in state-of-the-art CMOS technology. The project results will also be provided to standardisation bodies to allow alignment of requirements to technology limits.

The driving idea behind DRAGON is to research and use new design methodologies and architectural innovation based on reconfigurability and state-of-the-art digital CMOS technology to break the barriers imposed by the lacking scaling properties of analog components. Radio transceivers serve as an exemplary case with high impact value. With this concept we seek to achieve distinct reductions in cost, size and energy consumption for multi-standard cellular handsets, and other products employing similar technology, while meeting higher demands on data rate.Increased data rates require the energy consumption per transmitted or received data bit to be reduced, both to save energy and to avoid thermal problems. When successful, wireless data services become an attractive low-cost alternative for novel applications. Always connected should be an option for everyone. With increased integration levels and with a low thermal and energy budget, both system-in-a-package and system-on-a-chip become reality and, SMEs and other non-wireless European industries will be able to develop radio-based products and services.In DRAGON we will develop a design platform comprising multi-standard (EDGE, WCDMA, LTE, and, 4G) transceiver specifications and novel flexible architectures as a tool to meet them. The number of required external components, like analog filters, will be reduced by the use of reconfigurable digital CMOS circuitry; and critical building-blocks will be implemented to demonstrate proof of concept, both of the architecture and design methodology, including: a highly linear combined channel filter and receive ADC, RF digitisation receiver, a transmitter DAC, a switched-mode PA with adaptive digital predistortion and adaptive matching networks. All critical building-blocks will be fabricated, tested, and demonstrated in state-of-the-art CMOS technology. The project results will also be provided to standardisation bodies to allow alignment of requirements to technology limits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2009-4
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

TECHNIKON FORSCHUNGS- UND PLANUNGSGESELLSCHAFT MBH
EU contribution
€ 339 192,00
Address
BURGPLATZ 3A
9500 VILLACH
Austria

See on map

Region
Südösterreich Kärnten Klagenfurt-Villach
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0