Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Single-molecule junction capabilities to map the electron pathways in redox bio-molecular architectures

Objective

This proposal presents a novel methodology to explore the mechanisms of different electron pathways in redox bio-molecular architectures at the single-molecule level. Single-molecule contacts have been shown to be experimentally realizable at room temperature. Scanning Probe Microscopies are the most employed techniques for creating contacts due to the high spatial resolution. A huge variety of molecular systems has been already explored bringing a more robust understanding of the critical parameters required to build and measure charge transport through single-molecule devices; stable molecule-electrode chemical binding, univocal detection of a single-molecule contact formation or the elucidation of the effect on charge transport by different chemical groups. Single-molecule junctions with more complex bio-molecular systems are less explored but their feasibility has been already demonstrated on well-know structures like DNA or alpha-helices. Sulfur-content chemical groups are targeted in these systems to allow long-lived electrical contacts to the metal electrodes. Here we propose to use the above methodologies to achieve a complete picture of the electron pathways on an individual bio-molecular redox structure. Different electron pathways can be selected by forming single-molecule junctions at different positions of the outer shell of the protein structure. Site-directed mutagenesis can be used for creating the specific sites. A step further in this project will be to explore the dominant parameters involved in the sequential-step hopping electron transfer (ET). Such a study will provide clues for the understanding of the structural effects on the long-range ET in living organisms. This proposal assures a novel pioneering research particularly designed for the present host institution specialized in Biochemistry to be led by an expert researcher in the field of Molecular Electronics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
EU contribution
€ 100 000,00
Address
CARRER BALDIRI REIXAC PLANTA 2A 10-12
08028 Barcelona
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0