Skip to main content

Single-molecule junction capabilities to map the electron pathways in redox bio-molecular architectures


This proposal presents a novel methodology to explore the mechanisms of different electron pathways in redox bio-molecular architectures at the single-molecule level. Single-molecule contacts have been shown to be experimentally realizable at room temperature. Scanning Probe Microscopies are the most employed techniques for creating contacts due to the high spatial resolution. A huge variety of molecular systems has been already explored bringing a more robust understanding of the critical parameters required to build and measure charge transport through single-molecule devices; stable molecule-electrode chemical binding, univocal detection of a single-molecule contact formation or the elucidation of the effect on charge transport by different chemical groups. Single-molecule junctions with more complex bio-molecular systems are less explored but their feasibility has been already demonstrated on well-know structures like DNA or alpha-helices. Sulfur-content chemical groups are targeted in these systems to allow long-lived electrical contacts to the metal electrodes. Here we propose to use the above methodologies to achieve a complete picture of the electron pathways on an individual bio-molecular redox structure. Different electron pathways can be selected by forming single-molecule junctions at different positions of the outer shell of the protein structure. Site-directed mutagenesis can be used for creating the specific sites. A step further in this project will be to explore the dominant parameters involved in the sequential-step hopping electron transfer (ET). Such a study will provide clues for the understanding of the structural effects on the long-range ET in living organisms. This proposal assures a novel pioneering research particularly designed for the present host institution specialized in Biochemistry to be led by an expert researcher in the field of Molecular Electronics.

Call for proposal

See other projects for this call


Carrer Baldiri Reixac Planta 2A 10-12
08028 Barcelona
Activity type
Research Organisations
EU contribution
€ 100 000
Administrative Contact
Pau Gorostiza (Prof.)