Project description
Real-time bioreactor sensing system
Bioreactors are large vessels that support the culture of cells under controlled conditions and are used for the production of biologic pharmaceuticals in industry. Maintaining a contamination-free environment is fundamental for the sustainable and competitive production of bioproducts. The EU-funded LIBRA project aims to introduce a novel multi-sensing technology that allows screening of nutrients and pathogens in bioreactor samples in real time. The LIBRA system is chip-based, modular and automatable, and can be accommodated to a variety of existing devices to monitor cultivation processes. Implementation of the system will considerably advance bioreactor-based processes and lead to safer products.
Objective
The bioreactor industry is currently flourishing with a global market valued estimated at 2.3 B€ in 2020 and predicted to exceed 6.6 B€ euro by 2030, growing at a rate of 10.7% CAGR. Despite this impressive growth, there are challenges which can significantly impede the further advancement of bioreactors: Bioproducts can be sustainable and competitive only if reliable and contamination-free production is ensured. Currently, there is no catholic solution to this issue. To this end, LIBRA project introduces a benchtop smart multi-sensing system for the in-line automatable screening of cultivation processes in bioreactors. The LIBRA sensing technology lies in the use of light based integrated on-chip, real time sensors. A novel integration procedure of the photonic platforms together with disposable microfluidic modules and biofunctionalization units will result in a modular system with interchangeable components enabling the screening of nutrients and pathogens in bioreactor samples, according to the end users need. Furthermore, the LIBRA system will be able to be attached and integrated to various bioreactor systems regardless of their form factors, spanning from stirred tank bioreactors to single use bioreactors (SUB). To achieve this, LIBRA will rely on a highly multi-disciplinary consortium comprising expertise and specialization in several fields spanning photonics, surface functionalization, microfluidics, advanced packaging and assembly, artificial intelligence and bioreactor manufacturers. The exploitable results of LIBRA are expected to disrupt the current PIC-based sensing landscape, as estimated by the two business cases stemming from the project: the market revenues one year after the end of this project are expected to be €7.8 million growing to almost €59 million in 2032, and plethora of new IP and new business opportunities for the partners involved in the joint venture of LIBRA.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics microfluidics
- engineering and technology environmental biotechnology bioremediation bioreactors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology industrial biotechnology biomaterials
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.2.4 - Digital, Industry and Space
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.2.4.2 - Key Digital Technologies
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-RIA - HORIZON Research and Innovation Actions
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-CL4-2022-DIGITAL-EMERGING-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
157 72 ATHINA
Greece
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.