Project description
Innovative fire barrier for combustible materials
The rise of sophisticated products has led to an increase in the use of combustible materials, particularly organic materials that are highly flammable. To ensure people’s safety in case of fire, it is necessary to develop flame-retardant materials that can confine fires. The EU funded FireBar-Concept project aims to create materials and assembly materials that exhibit low flammability, protect substrates, and limit the spread of fire. The project will design a fire barrier that reacts appropriately to thermal constraints, formed at the right time and location, and developed in different ways according to the material’s chemical nature or formulation. This innovative project involves a multidisciplinary approach, with experts in material science, chemical engineering, chemistry, thermal science, and physics collaborating to achieve the project’s objectives.
Objective
The development of science and technology provides the availability of sophisticated products but concurrently, increases the use of combustible materials, in particular organic materials. Those materials are easily flammable and must be flame retarded to make them safer. In case of fire, people must be protected by materials confining and stopping fire. It is one of the goals of the FireBar-Concept project to design materials and assembly of materials exhibiting low flammability, protecting substrates and limiting fire spread.
The objective of FireBar-Concept is to make a fire barrier formed at the right time, at the right location and reacting accordingly against thermal constraint (fire scenario). This fire barrier can be developed in several ways according to the chemical nature of the material and/or of its formulation:
- Heat barrier formed by inherently flame retarded materials (e.g. mineral fibers, ceramic …) and exhibiting low thermal conductivity (note the assembly of those materials can also provide low thermal conductivity controlling porosity and its distribution)
- Evolution of reactive radicals poisoning the flame and forming a protective ‘umbrella’ avoiding the combustion of the material
- Additives promoting charring of the materials and forming an expanding carbonaceous protective coating or barrier (intumescence)
- Additives forming a physical barrier limiting mass transfer of the degradation products to the flame
The FireBar-Concept project is multidisciplinary and it requires expertise in material science, chemical engineering, chemistry, thermal science and physics. The approach is to make 5 actions linked together by transverse developments (3) according to this scheme: (i) fundamentals of fire barrier, (ii) multi-material and combination of concepts, (iii) modeling and numerical simulation, (iv) design and development of experimental protocols and (v) optimization of the systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering fibers
- engineering and technology materials engineering coating and films
- engineering and technology chemical engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
59000 Lille
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.