European Commission logo
English English
CORDIS - EU research results

Article Category

Content archived on 2023-04-03

Article available in the following languages:


Climate change threatens some of the world’s best wines

Global warming is affecting the taste and production of wine growing regions across the world. Finding genes better suited to stress and pests can boost resilience.

Millions of people across Europe have enjoyed soaring temperatures in the summer of 2017, with sizzling barbeques, good food, and fine wine. But as both global and regional records are broken, the wine growers supplying these summer feasts are feeling the effects of climate change on their trade. This is not a problem for the future: climate change is already impacting vineyards all over the world, including regions producing household names such as Bordeaux, Alsace and Chianti. Increased heat and CO2 levels can affect the flavour and ripening times of the fruit. Higher temperatures also cause pests and pathogens to thrive. At the local level, unpredictable weather can bring damaging downpours and hailstorms can decimate yields in hours. “The impact of climate change on wine production is quite real,” says Dr Elizabeth Wolkovich, an ecologist at Harvard University Center for the Environment, Massachusetts, US. “Producing good (or great) wine grapes requires an accurate matching of the wine grape variety to the local climate. But with climate change the challenges will only grow as temperatures continue to rise and precipitation regimes continue to shift.” France warmed by about 1.5 Celsius during the last century, and global wine production fell by 3.2% in 2016, particularly in the southern hemisphere where Brazil suffered an eye-watering 55% drop. Scientists and industry are under pressure to respond and have been busy with projects that combine academic expertise and more practical industry know-how. Since 2013, Dr Anne-François Adam-Blondon, Director of Research in the Plant Biology and Breeding division of the National Institute for Agricultural Research (INRA), Paris, France, has led InnoVine. The European project looks to bring climate-change resilient advances by investigating wine production from the vineyard, plant and genomic level. Of these three main programme themes, Adam-Blondon says there were many interesting outputs, but that breeding varieties more resistant to disease and environmental stresses was most effective. “Adopting a new genetic material better adapted to stress, such as new varieties and new clones, always had a greater impact than any other way of dealing with the problem,” she says. Researchers undertook more than 2000 genetic tests for diseases such as powdery and downy mildew as well as black rot, finding many new sources of pest and stress resistance that plant breeders can incorporate into new varieties. Coordinating a huge amount of data, from testing new agronomic systems at the vineyard level to measuring desirable traits like grape sugar concentrations at the plant level, required complex organisation. Larger vineyards already use sophisticated mathematical models to help them make decisions, like harvesting earlier if the temperature is consistently higher than expected because the grapes ripen in the sun more quickly. This was an opportunity for the team to integrate new project results into the models, or Decision Support Systems (DSS) as they are known. DSS can assist in reducing pesticide applications, for example, by modelling the development of a population of pathogen against the weather, and the developmental stage of the plant. “The models try to put all these parameters, varietal and climatic, as input and to predict the output in term of disease”, says Adam-Blondon. “The InnoVine project injected into the DSS model the varietal and developmental part of it. The same was done for models predicting berry composition, which is related to vintage quality, in relation to climate parameters and varietal behaviours.” Read more:


wine, food, climate change, global warming, agriculture, resilience, genes, research


Brazil, France, United Kingdom, United States