Project description
Modelling heart electrophysiology
Cardiac arrhythmia, irregular beating of the heart, is a frequent cause of death and disability. To study the complex electrical system that is behind these arrhythmia, mathematical models are widely used. Scientists of the EU-funded MICROCARD project want to build a successor to these cardiac electrophysiology models that represents individual cells and their interconnections. However, this greatly increases the size and complexity of the simulations and requires exascale computing. MICROCARD will develop a sophisticated simulation platform that is suitable for exascale computers and provides reliable insight into the electrophysiology of the heart and similar biological systems such as nerves, muscles, the eye, and the brain.
Objective
Cardiovascular diseases are the most frequent cause of death worldwide and half of these deaths are due to cardiac arrhythmia, a disorder of the heart's electrical synchronization system. Numerical models of this complex system are highly sophisticated and widely used, but to match observations in aging and diseased hearts they need to move from a continuum approach to a representation of individual cells and their interconnections. This implies a different, harder numerical problem and a 10,000-fold increase in problem size. Exascale computers will be needed to run such models.
We propose to develop an exascale application platform for cardiac electrophysiology simulations that is usable for cell-by-cell simulations. The platform will be co-designed by HPC experts, numerical scientists, biomedical engineers, and biomedical scientists, from academia and industry. We will develop, in concert, numerical schemes suitable for exascale parallelism, problem-tailored linear-system solvers and preconditioners, and a compiler to translate high-level model descriptions into optimized, energy-efficient system code for heterogeneous computing systems. The code will be parallelized with a recently developed runtime system that is resilient to hardware failures and will use an energy-aware task placement strategy.
The platform will be applied in real-life use cases with high impact in the biomedical domain and will showcase HPC in this area where it is painfully underused. It will be made accessible for a wide range of users both as code and through a web interface.
We will further employ our HPC and biomedical expertise to accelerate the development of parallel segmentation and (re)meshing software, necessary to create the extremely large and complex meshes needed from available large volumes of microscopy data.
The platform will be adaptable to similar biological systems such as nerves, and components of the platform will be reusable in a wide range of applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences clinical medicine cardiology cardiovascular diseases cardiac arrhythmia
- natural sciences computer and information sciences software software applications system software
- natural sciences physical sciences optics microscopy
- natural sciences computer and information sciences artificial intelligence expert systems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.1.2. - Next generation computing: Advanced and secure computing systems and technologies, including cloud computing
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-JTI-EuroHPC-2019-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
33000 Bordeaux
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.