Objective
Modern transport aircraft are designed for high efficiency and long service lives, resulting in heavy loaded structures. This application requires damage tolerant materials with low crack propagation rates. Recently improved alloys have been developed, enabling also new joining technologies like laser beam welding. These materials reveal a lack of understanding of the microstructure-crack growth relationship, existing for the well-known alloy 2024. This missing knowledge will be attained in this project by comprehensive material characterization to identify the complex fatigue and fracture relevant microstructure-crack growth relationship. Thorough fatigue crack propagation testing and complementary examination on crack surface morphology, plastic zone and crack closure effects will be performed. Based on the attained knowledge prediction models will be established and verified. Recommendations for optimisation of microstructures will be derived. This specific information will allow optimised application of the recently developed damage tolerant materials and laser beam welding technology, consequently improving Aircraft Efficiency
Fields of science
Call for proposal
Data not availableFunding Scheme
CSC - Cost-sharing contractsCoordinator
28199 Bremen
Germany
See on map
Participants (13)
Bristol
See on map
81663 Muenchen
See on map
51147 Koeln
See on map
92152 Suresnes
See on map
21502 Geesthacht
See on map
26441 Patras
See on map
00128 Roma
See on map
92322 Chatillon
See on map
75016 Paris
See on map
London
See on map
84084 Fisciano
See on map
60100 Ancona
See on map
61 Limerick
See on map