Objective
State-of-the-art music generation systems (Continuator, OMax, Mimi) produce music that sounds good on a note-to-note level but lacks critical structure/direction necessary for long term coherence. To tackle this problem, we propose to generate compositions based on structural templates at varying hierarchical levels. Our novel approach deploys machine-learning methods in an optimization context to morph existing pieces into new ones and to fuse different styles.
We aim to develop a framework that combines machine learning techniques that learn style, with a powerful optimization method, the variable neighbourhood search (VNS) algorithm, for generating music. This approach allows the learned model to incorporate a wide variety of constraints, including those for preserving long term coherence and structure. It promises to effect a step-change in automatic music generation by moving the field in the new direction of generating structured music using hybrid machine learning-optimization techniques.
The applicant is an operations researcher-musician, ideal for this work. A first step combines her VNS music generation algorithm with machine learning methods to ensure proper style evaluation. In previous work, the applicant has shown that VNS outperforms genetic algorithms when generating counterpoint with a rule-based objective function. In a preliminary study, the applicant has demonstrated the effectiveness of using machine learning techniques as evaluation metrics for optimisation methods. The applicant has extensive web development experience; to reach the widest possible audience, the resulting system will be made available in an interactive website where users can morph and fuse musical pieces.
This work is situated in the area of digital media, with a European consumer expenditure of over €33 billion in 2011, projected to increase. Music generation in digital music has direct applications in game music, interactive arts, and stock-music for advertising/videos.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences internet web development
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications mobile phones
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences mathematics applied mathematics mathematical model
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
E1 4NS London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.