Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

SEismology of the MOon

Objective

As part of the Apollo lunar missions, four seismometers were deployed on the near-side of the Moon between 1969 and 1972, and operated continuously until 1977. There are many difficulties associated with determining lunar structure from these records. As a result, many properties of the moon, such as the thickness, density and porosity of the crust are poorly constrained. This hampers our ability to determine the structure, geochemical composition of the moon, its evolution, and ultimately the evolution of the solar system. This proposal uses modern seismic processing techniques to overcome these limitations. Using ambient noise tomography, it will provide a new, more accurate, model of the lunar crust and mantle. I will apply recent advances in the full waveform modelling of scattering at planetary scale by the host institution to the strongly scattering lunar crust. We will explore entirely new routes for planetary seismology by investigating single-station inverse problems building on recent work in rotational seismology pioneered at the host institution. The project is designed to develop a profile for myself as a planetary seismologist, and to position myself and the host institution to work on the Mars InSight mission in the future. InSight is a NASA Discovery mission, scheduled to land in September 2016, which will deploy a single seismometer on the surface of Mars. We combine the expertise of the researcher in surface wave analysis and tomographic modelling; the facilities and expertise of Ludwig Maximilian University (LMU) in ambient noise studies, full waveform modelling, modelling of seismic scatter and rotational seismology; and an interdisciplinary team of researchers with experience of the techniques and with diverse interests in geochemistry, geodynamics and planetary evolution.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2014

See all projects funded under this call

Coordinator

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 171 460,80
Address
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 171 460,80
My booklet 0 0