Objective
The FReSMe project, From Residual Steel gases to Methanol, will produce a methanol that will be demonstrated in ship transportation. This green fuel will be produced from CO2, recovered from an industrial Blast Furnace, and H2 recovered both from the blast furnace gas itself, as well as H2 produced by electrolysis. The two different sources of H2 will enable (i) maximum use of the current residual energy content of blast furnace gas, while at the same time (ii) demonstrating a forward technology path where low carbon or renewable H2 become more ubiquitous.
The project will make use of the existing equipment from two pilot plants, one for the energy efficient separation of H2 and CO2 from blast furnace gas, and one for the production of methanol from a CO2-H2 syngas stream. This can be realised with a small amount of extra equipment, including supplemental H2 production from an electrolyser and a H2/N2 separation unit from commercially available equipment.
Methanol is a high volume platform chemical of universal use in chemical industry as well as applicable for fuelling internal combustion engines. As such it provides a promising pathway for the large scale re-use of CO2 to decarbonize the transportation and chemical sectors in Europe and decrease the dependence on fossil fuel imports. Production of methanol from CO2 offers the unique combination of scale, efficiency and economic value necessary to achieve large scale carbon reduction targets.
The pilot plant will run for a total of three months divided over three different runs with a nominal production rate of up to 50 kg/hr from an input of 800 m3/hr blast furnace gas. This size is commensurate with operation at TRL6, where all the essential steps in the process must be joined together in an industrial environment. The project will address the new integration options that this technology has within the Iron and Steel industry and contains supplementary and supporting research of underlying phenomena.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology environmental engineering energy and fuels renewable energy
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences organic chemistry alcohols
- engineering and technology chemical engineering
- engineering and technology environmental engineering carbon capture engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.2. - Low-cost, low-carbon energy supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LCE-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28050 Madrid
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.