Objective
In recent years, more and more scenarios pose challenges that require collective intelligence solutions based on networks (knowledge networks, social networks, sensor networks). New forms of collaborative consumption, collaborative making, collaborative production, all rely on a common task, the formation of collectives. This task is crucial in many real-world applications domains. Notable examples of actual-world collective formation scenarios are Collective Energy Purchasing (CEP), a collaborative consumption scenario, and Team Formation (TF), a collaborative production scenario. Within the Artificial Intelligence literature, current state of the art algorithms cannot provide the level of scalability and the solution
quality required by actual-world collective formation problems, hence novel algorithms are needed to tackle these problems. To achieve this objective, we aim at proposing novel algorithms that are capable to exploit modern highly-parallel architectures. On the one hand, highly-parallel architectures have been successfully applied in many different scenarios so to achieve tremendous performance improvements. These advancements encourage the investigation of parallelisation also in collective formation, with the objective of achieving the same benefits. On the other hand, our past research indicates that considering the structure of the collective formation problem leads to notable benefits in terms of scalability and solution quality. Thus, we propose to take a novel algorithmic design approach that considers both the structure of the scenario and at the same time exploits modern highly-parallel architectures. Our algorithms will be evaluated in two prominent collective intelligence application domains: the CEP and TF domains. The choice of these two application domains will serve to show the generality of our algorithmic design approach, since they are representative of two structurally different families of actual-world collective formation problems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- social sciences political sciences public administration bureaucracy
- social sciences political sciences political transitions revolutions
- social sciences sociology demography census
- social sciences educational sciences pedagogy active learning
- social sciences psychology developmental psychology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.