Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Constructing and powering nanoscale DNA origami motors

Objective

Our goal is to advance the field of DNA nanotechnology by achieving directed transport on the nanoscale using robustly functioning synthetic motor units. To do so, we propose to construct spatially periodic, diffusive mechanisms that have broken inversion symmetry and to subject these mechanisms to conditions away from thermal equilibrium. We will build on recent progress in creating complex DNA-based structures and construct various nanoscale rotary and translational Brownian ratchet mechanisms that have well- defined degrees of freedom for motion within periodic and asymmetric energy landscapes. The mechanisms will be self-assembled from DNA origami components. We will use cryo-Transmission Electron Microscopy (TEM) to evaluate and iteratively refine our structures. Conventional video-rate fluorescence microscopy, in addition to super-resolution microscopy, will be employed to study in solution and in real time the diffusive motion of the mechanisms on the single particle level. We will introduce various deterministic or stochastic thermal, mechanical, or chemical perturbations to drive the systems away from thermal equilibrium. We will use laser heating and cooling to experimentally test thermal and flashing ratcheting mechanisms; we will employ dissipative asymmetric fluxes arising in active matter as realized in high-density ATP-hydrolysing motility assays; and we will couple out-of-equilibrium chemical reactions to the motion of our mechanisms. The ultimate goal of our work is to take insights from these experiments and create robustly functioning nanoscale motor units that can drive directed motion against external load and perform at levels comparable to those of natural macromolecular motor proteins. Achieving this goal will create unprecedented technological opportunities, for example, to drive chemical synthesis, actively propel nanoscale drug- delivery vehicles, pump and separate molecules across barriers or package molecules into cargo components.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-COG

See all projects funded under this call

Host institution

TECHNISCHE UNIVERSITAET MUENCHEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 000 000,00
Address
Arcisstrasse 21
80333 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 000 000,00

Beneficiaries (1)

My booklet 0 0