Objective
We propose to establish Plasmon-enhanced Terahertz Electron Paramagnetic Resonance spectroscopy and scanning microscopy as a unique Electron Paramagnetic Resonance (EPR) platform for high-sensitivity local analysis of paramagnetic organic and inorganic species and materials. Here, we will deliver novel hardware and infrastructure providing ground-breaking innovation in the magnetic sensing and imaging. The platform is conceptually based on incorporating THz plasmonic antennas onto surfaces (spectroscopy) and scanning probe tips (microscopy), resulting in a strong, local enhancement (about two orders of magnitude) of the magnetic sensing field.
Extending to the THz region enables effective utilization of plasmonic structures resulting in a radical improvement of EPR sensitivity (about four orders of magnitude) and spatial resolution going beyond the diffraction limit, and thus introduce a scanning probe microscopic regime into this field. This will make it possible to map the sample over its area and so to localize its properties with unprecedented resolution (below 1 micrometre). Such a significant enhancement of the EPR performance will open new ways in magnetic sensing technologies enabling for instance to study in situ functional centres in a wide variety of materials, and, generally, set a new direction in the development of the EPR-employing industry.
EPR finds its applications in many scientific areas covering chemistry, biology, medicine, materials science, physics, etc. Hence, introducing this new method would have a profound impact on scientific, technological and societal stakeholders in many research and industrial communities.
Fields of science
Programme(s)
Funding Scheme
RIA - Research and Innovation action
Coordinator
601 90 Brno Stred
Czechia
See on map
Participants (3)
70174 Stuttgart
See on map
20018 San Sebastian
See on map
RH14 9SH Billingshurst
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.