Objective
The last twenty years have witnessed an exceptionally fast development in the field of the extra solar planets. The known exoplanets, 3500 to date, already show how diverse the planets in our galaxy can be. While the detection of exoplanets is an important ongoing field of activity, the characterization of their atmospheres has just begun and it is developing very rapidly. A lot can be learnt from spectroscopic observations of an exoplanet atmosphere; the molecular composition of giant exoplanet atmospheres can trace the planet's formation and evolution; the atmosphere of rocky exoplanets can host biosignature gases... However, the observations are challenging because the signal is often embedded in instrumental and telescope systematic noise. In the ExoplANETS_A project, we will develop novel data calibration and spectral extraction tools, as well as novel retrieval tools, based on 3D models of exoplanet atmospheres, to exploit archival data from ESA Space Science archives (HST) combined with NASA Space Archives (Spitzer, Kepler) and produce a homogeneous and reliable characterization of exoplanet atmospheres. Additionally, to model successfully the atmosphere of an exoplanet, it is necessary to have a sound knowledge of the host star. To this end, we will collect a coherent and uniform database of the relevant properties of host stars from ESA Space Science archives (XMM, Gaia), combined with international space mission and ground-based data. These exoplanet and host star catalogues will be accompanied/interpreted with models to assess the importance of star – planet interactions. The knowledge gained from this project will be disseminated through peer-review publications and modelling tools will be publicly released.
In addition to the delivery of high level data products, state of the art tools, models and scientific publications, the project the project will ready us to rapidly exploit data from the James Webb Space Telescope, which is a highly competitive.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences astronomy planetary sciences planets exoplanetology
- natural sciences physical sciences astronomy observational astronomy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.3. - Enabling exploitation of space data
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-COMPET-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 PARIS 15
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.