Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Bio-compatible electrostrictive smart materials for future generation of medical micro-electro- mechanical systems

Objective

Demographic trends, such as the rapid growth and ageing of the world population, are putting pressure on global healthcare systems, increasing the demand for smart, effective and affordable biomedical systems. Micro-Electro-Mechanical Systems (MEMS) are key components of such biomedical systems, enabling miniaturised devices with diagnostic, prognostic and therapeutic functionalities. Although these systems are poised to revolutionize medical diagnostics and treatment approaches, the slow progress in the development of biocompatible actuator materials is still hindering this industry, preventing a host of new biomedical devices to enter the mainstream market. BioWings proposes to solve this deadlock through the implementation of a completely new class of smart actuating materials to be integrated in biocompatible MEMS. This family of materials is based on highly defective cerium oxides, which recently displayed radically different properties compared to existing ones: 1. They are non-toxic and environmentally friendly, unlike the current lead-based actuators; 2. They show exceptionally high and still uncapped electrostrictive response under moderate electric fields, enabling low power consumption devices; 3. They are fully compatible with silicon-based technologies and many other substrates, including metals and polymers. To fully explore the potential of these materials, foundational knowledge must still be generated on both the basic physical mechanisms and the manufacturing process. To reach this, BioWings focuses on: 1. Understanding, predicting, and controlling the mechanism underlying the unparalleled electrostrictive behaviour of highly defective oxides, by unveiling the effects of the microstructure, as well as the type and concentration of dopants; 2. Identifying a methodology for controlling the electromechanical properties of such materials, using facile manufacturing processes on bio-compatible substrates and electrodes, exploring the scale limit of the device/materials, thus opening up a new path that solves important manufacturing issues in advanced electronics industry; 3. Proving the concept by integrating ceria-based electrostrictors into Bio-MEMS with diverse architectures and acoustofluidic medical blood samples preparation chips.
Such results will be pursued by a multidisciplinary group of academic, industrial and medical partners, who will lay the foundations for a new paradigm in a new bio-compatible and environmentally friendly actuator smart materials design and implementation, which will have considerable impact on the scientific, medical and industrial community.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2016-2017

See all projects funded under this call

Coordinator

DANMARKS TEKNISKE UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 021 293,75
Address
ANKER ENGELUNDS VEJ 101
2800 Kongens Lyngby
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 021 293,75

Participants (6)

My booklet 0 0