European Commission logo
English English
CORDIS - EU research results
CORDIS

The Capillary Lock Actuator: A novel bistable microfluidic actuator for cost-effective high-density actuator arrays suitable for large-scale graphical tactile displays

Project description

Novel actuator for large-scale graphic tactile displays

The World Health Organization counts some 300 million people who are visually impaired, worldwide. Yet, progress has been limited in recent decades on tactile displays that allow for texts to be translated and graphics turned to touchable pixels. This ERC Consolidator project aims to further advance micro-actuator array technology with a fundamentally new concept termed the Capillary Lock Actuator (CaLA). CaLA will be a significant breakthrough in the field, allowing for a wide range of applications in microsystem technology. Most importantly, it will mark a significant step in making information technology inclusive for all people who are visually impaired, providing a cost-effective solution to large-scale tactile displays.

Objective

According to the World Health Organization more than 285 million people worldwide are visually impaired. In a world where graphics and online content (images, webpages) become increasingly important the inability to perceive information visually is the primary inhibitor for inclusion. In contrast to display technology for sighted people, tactile displays which translate text and graphics to touchable pixels (taxels) have seen little progress in recent decades. So-called Braille lines which display only a single line of text are still the norm. The reason why graphical tactile displays do not exist is the lack of a suitable actuator technology which allows generating massively parallelized individually addressable cost-effective taxel arrays.

This ERC Consolidator project aims at a revolution in microactuator array technology with a fundamentally new concept termed the Capillary Lock Actuator (CaLA). CaLA is a novel bistable massively parallelizable microfluidic microactuator which overcomes many of the limitations currently associated with microactuators. It can be operated with low-voltage control signals and requires virtually no power for actuation. CaLA harnesses three concepts inherent to microfluidics: positive capillary pressure, segmented flow and controllable locally confined changes in wetting. The project will use CaLA actuator arrays for setting up the very first portable tactile graphic display with 30.000 individually addressable taxels thereby significantly outperforming the state-of-the-art. It will be based on manufacturing techniques for highly complex microstructures in glass invented by my group.

CaLA will be a significant breakthrough in actuator technology and enabling for many applications in microsystem technology. Most importantly, it will be a significant step towards making the information technology inclusive for the visually impaired by providing the first robust cost-effective solution to large-scale tactile displays.

Host institution

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Net EU contribution
€ 1 999 750,00
Address
FAHNENBERGPLATZ
79098 Freiburg
Germany

See on map

Region
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 999 750,00

Beneficiaries (1)