Project description
Finding a match made in heaven
Catalysts are sort of like matchmakers, bringing together two or more molecules to speed up the rate at which they would otherwise react unassisted. They are critical to innumerable processes of socioeconomic relevance. However, just like with human "chemistry," the matchmaker must find exactly the right participants that may differ only in very small ways. Some matchmakers are better than others, largely based on their structures and active sites. The EU-funded KIDS project is harnessing high-tech imaging to spy on matchmakers in action, greatly improving our ability to describe site-specific chemical reaction mechanisms and rates in catalysis involving solid catalysts and liquid or gaseous reactants.
Objective
This proposal implements slice imaging to measure catalytic rates for site-specific elementary reactions thus offering remarkable opportunities to advance our fundamental understanding of heterogeneous catalysis.
As evidence for global climate change continues to grow, catalysis has moved to the front line of the struggle to obtain new, sustainable technologies for the future. Catalysis and catalytic processes account, directly or indirectly, for 20-30 % of world Gross Domestic Product. Knowledge of elementary chemical reaction mechanisms in heterogeneous catalysis underlies our ability to construct comprehensive kinetic models for many such important chemical processes, in order to optimise them.
Our proposed strategy makes the formidable task of describing site-specific chemical reaction mechanisms and elementary rates in heterogeneous catalysis facile, while its necessity we justified (Nature 2018) on the prototypical CO oxidation reaction on Pt by demonstrating that 40 years of traditional experimentation led to false interpretation of the reaction mechanism.
The aim of this proposal is characterize the important factors that influence the kinetics of elementary reactions at surfaces, e.g. the chemical nature of the catalyst and the geometry of the active site (stereodynamics). We chose elementary reactions involving C, H, O, N, as these are important in many key industries, such as the methane reforming, syngas, fuel cells, Fischer-Tropsch synthesis and the Haber-Bosch process. Our strategy is that of a “bottoms up” approach to catalysis, i.e. building and understanding complex heterogeneous chemical catalysis, from the site-specific kinetics of the elementary building block reactions. Our measurements, will serve for benchmarking first principles calculations of reaction rates in surface chemistry. Our methodology measures the kinetics in the s regime with temperatures in the 200 to 1000 K range, i.e more relevant to industrial conditions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences catalysis
- natural sciences mathematics pure mathematics geometry
- natural sciences chemical sciences organic chemistry aliphatic compounds
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.