Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Bio-Inspired Hierarchical MetaMaterials

Project description

A new class of bioinspired mechanical metamaterials

The technological development of a new class of bioinspired mechanical metamaterials – artificially designed materials with properties not found in nature – is the aim of the EU-funded BOHEME project. Drawing on research from various disciplines (from biology and mathematics to ocean engineering and materials science), it is assuming that the working principle behind metamaterials is already exploited in nature and that through evolution this has led to optimised designs for impact damping. BOHEME will take a disruptive approach for applications over various wavelength scales, from non-destructive testing to noise reduction to low-frequency vibration control (including seismic) to coastal protection or energy harvesting from ocean waves.

Objective

BOHEME’s ambitious goal is to design and realize a new class of bioinspired mechanical metamaterials for novel applicative tools in diverse technological fields. Metamaterials exhibit exotic vibrational properties currently unavailable in Nature, and numerous important applications are emerging. However, universally valid design criteria are currently lacking, and their effectiveness is presently restricted to limited frequency ranges.
BOHEME starts from an innovative assumption, increasingly supported by experimental evidence, that the working principle behind metamaterials is already exploited in Nature, and that through evolution, this has given rise to optimized designs for impact damping. The “fundamental science” part of the project aims to explore biological structural materials for evidence of this, to investigate novel optimized bioinspired designs (e.g. porous hierarchical structures spanning various length scales) using state-of-the-art analytical and numerical approaches, to design and manufacture vibrationally effective structures, and to experimentally verify their performance over wide frequency ranges.
Through this disruptive approach, BOHEME will provide a pipeline to the technological development of a new class of bioinspired metamaterials in innovative applicative sectors over various wavelength scales, from non-destructive testing, to noise reduction, to low-frequency vibration control (including seismic), to coastal protection or energy harvesting from ocean waves. Industrial partners will provide know-how for proof of principle experiments and possible prototypes. The project is ambitious and inherently multidisciplinary, involving research in biology, mathematics, physics, materials science, structural and ocean engineering, drawing from scientific excellence of the partners. It involves theoretical, numerical and experimental aspects, and is a high-impact endeavour, from which basic science, EU industry and society can benefit.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2018-2020

See all projects funded under this call

Coordinator

UNIVERSITA DEGLI STUDI DI TRENTO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 608 750,00
Address
VIA CALEPINA 14
38122 Trento
Italy

See on map

Region
Nord-Est Provincia Autonoma di Trento Trento
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 608 750,00

Participants (10)

My booklet 0 0