Objective
This project focuses on Effective Computational Geometry for Curves and Surfaces. This is a challenging and almost untouched research area with a huge number of potential applications in almost all application domains involving geometric computing, e.g. computer aided design and manufacturing, computer graphics and virtual reality, scientific visualization, geographic information systems, molecular biology, fluid mechanics, and robotics. We intend to develop multidisciplinary cooperative research in three main directions: computational geometry, computer algebra and numerical analysis, to develop solid theoretical foundations, to validate our theoretical advances through extensive experimental research, and to develop software packages. Special attention will be paid to the impact of our research.
OBJECTIVES
The objectives of the project are:
- To take into consideration the multidisciplinary nature of the problem and to develop cooperative research in three main directions: computational geometry, computer algebra and numerical analysis;
- To give Effective Computational Geometry for Curves and Surfaces solid mathematical and algorithmic foundations, to provide solutions to key problems and to validate our theoretical advances through extensive experimental research and the development of software packages that could serve as steps towards a standard for safe and effective geometric computing;
- To promote collaborative research, the interchange between the partners (workshops), exchanges of Ph.D. students and research staff;
- To disseminate our results through research reports, open source softwares, software packages and through a program of open activities including summer-schools and advanced courses intended to academia and industry.
DESCRIPTION OF WORK
This project is focused on effectively handling curved objects. Many application domains ranging from engineering to medicine have a demand for computer models of physical objects that are curved, moving and deformable. Our research will be guided by four different main aspects:
- Geometric algorithms for curves and surfaces. We intend to revisit the field of Computational Geometry in order to understand how structures that are well known for linear objects behave when defined on curves and surfaces;
- Algebraic issues. Several operations on non-linear geometric objects, often lying at the algorithm's bottleneck, are equivalent to manipulating polynomials. A fundamental question is the solution of algebraic systems, ubiquitous in the construction of new objects, such as intersections. Another crucial goal is the implementation of primitives with Boolean or discrete output, such as an object is contained in some bounding object;
- Robustness issues. Geometric programs are notorious for their non-robustness: algorithms are designed for a model of computation where real numbers are dealt with exactly geometric algorithms are frequently only formulated for inputs in general position. This is not simply and academic problem. It is easy to crash any commercial CAD-system. Progress has been made only in recent years. A significant part of the progress was made by the proposers and centres around the so-called exact computation paradigm. We will extend this paradigm to curved objects;
- Approximating curves and surfaces. Since algorithms for curves and surfaces are more involved, more difficult to make robust and typically several orders of magnitude slower than their linear counterparts, there is a need for approximate representations. We will provide robust and quality guaranteed approximations of curves and surfaces. Such a research program requires a multidisciplinary approach and our consortium will gather expertise from Computational Geometry and other areas in mathematics and computer science such a computer arithmetic, computer algebra and numerical analysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences physical geography cartography geographic information systems
- natural sciences mathematics pure mathematics algebra
- natural sciences mathematics pure mathematics geometry
- natural sciences computer and information sciences software software applications virtual reality
- natural sciences mathematics applied mathematics numerical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
78153 LE CHESNAY
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.