Objective
While heterogeneous catalysis is often considered a mature science, the so-called enabling technologies are often able to produce significant enhancements in the rate of reaction or in the selectivity towards a given product. Two of these enabling technologies constitute the focal point of this project, where nonclassical energy input by microwave iradiation and alternative reaction engineering (microreactors operating under a stable solid-gas temperature gap) will be used to obtain substantial improvements in the yield or in the energy efficiency of chemical processes.
This project aims for a breakthrough in reactor engineering by developing a new type of heterogeneous catalytic reactor, capable of operating under a controlled solid-gas temperature difference.
To implement this innovative technology, we will deploy different materials that are sensitive to microwave radiation (zeolite films with/without deposition of metallic particles, metallic films and nanoparticles) on the channels of microreactors made of materials that are transparent to microwaves. A basic study of adsorption and heating processes under microwave irradiation will lead to the selection of materials and conditions that enable operation under a significant temperature difference between the catalyst and the gas phase. The advantages obtained from this novel concept will be exploited in specific, industrially important, reaction processes (CO oxidation in H2 streams; VOC combustion in lean mixtures; ethylene epoxidation), where significant improvements in reaction yield and/or operating costs are expected. At the same time, new scientific and technological insight will be gained in the area of catalyst heating by microwaves.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural scienceschemical sciencescatalysis
- engineering and technologynanotechnologynano-materials
- natural scienceschemical sciencesorganic chemistryaliphatic compounds
You need to log in or register to use this function
Call for proposal
ERC-2010-AdG_20100224
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
50009 Zaragoza
Spain