Project description
Advancing solid state physics and metasurfaces
The development of atomically layered materials, composed of individual atomic planes bonded together by weak van der Waals (vdW) interactions, represents a crucial advancement in solid-state physics. These materials exhibit unique electronic properties and can form multi-material heterostructures with atomically sharp interfaces, making them essential for various applications. However, optically accessing fundamental electronic excitations of 2D materials remains a significant challenge that hinders further progress. The ERC-funded METANEXT project aims to overcome this challenge by developing a new model for amplifying and harnessing light-matter interactions in 2D materials by shaping vdW heterostructures into resonant building blocks of optical metasurfaces. Ultimately, the project seeks to provide fundamental insights into these fields and their practices.
Objective
Atomically layered materials composed of individual atomic planes bonded together by weak van der Waals (vdW) interactions have sparked a revolution in solid state physics due to their unique electronic properties and capability for forming multi-material heterostructures with atomically sharp interfaces. However, accessing fundamental electronic excitations of two-dimensional (2D) materials optically has so far been a major challenge due to the associated low absorption cross sections and their low environmental stability.
METANEXT will establish a new paradigm for amplifying and harnessing light-matter interactions in 2D materials by shaping vdW heterostructures into the resonant building blocks of optical metasurfaces. At the core of the proposed platform is the implementation of nanostructured hexagonal boron nitride (hBN) as a photonically active material, pushing beyond its currently prevalent use as a passive buffer layer in optoelectronics. Leveraging the emerging concept of optical bound states in the continuum, I will use my extensive experience in nanophotonic engineering to design and experimentally realize hBN-based metasurfaces with ultrasharp resonances incorporating mono- and few-layer systems of vdW materials, allowing direct optical access to such 2D systems with unprecedented efficiency and spectral/spatial control over the excitation. Specifically, I will utilize the METANEXT platform to (1) push the limits of light-matter coupling in black phosphorus heterostructures, (2) greatly boost the efficiency of single-photon generation from localized defects in atomically thin molybdenum disulfide (MoS2), and to (3) realize a completely new concept for valley-dependent on-chip lasing from transition metal dichalcogenide (TMD) monolayers.
METANEXT will deliver both fundamental insights into the optical excitation mechanisms of current and future 2D materials as well as important conceptual advances for practical chip-integrated quantum light sources.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences electromagnetism and electronics optoelectronics
- natural sciences chemical sciences inorganic chemistry transition metals
- social sciences political sciences political transitions revolutions
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.