Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Paramagnetic Materials Studied by ultra-fast ssNMR Spectroscopy

Project description

Advancing NMR techniques for paramagnetic materials

Paramagnetic materials are essential in numerous industries, particularly for energy conversion, transport, and storage. These materials owe their unique properties to unpaired electrons located at transition metal ions, which influence their reactivity and performance. However, understanding the atomic structure of these materials has been a longstanding challenge, as conventional techniques like X-ray diffraction and electron microscopy fall short. Supported by the Marie Skłodowska-Curie Actions programme, the ParaMAS project addresses this gap by developing cutting-edge solid-state nuclear magnetic resonance (ssNMR) methods. By combining multi-dimensional ssNMR with ultra-fast magic-angle spinning, the project aims to produce high-resolution spectra, enabling a deeper understanding of the atomic structure and performance of paramagnetic materials, ultimately advancing energy-related technologies.

Objective

Paramagnetic materials have found application in various different industries, in particular involving the conversion, the transport, and the storage of energy. The characteristic microscopic feature for the majority of these materials are unpaired electrons that are located at transition metal ions. Such paramagnetic centers are the key element for the macroscopic properties, e.g. reactivity. To understand the function of paramagnetic materials, why they deliver, or fail to deliver the required properties, and eventually to tune their performance, the local atomic structure of the paramagnetic centers must be fully understood. In diamagnetic materials, these structural features typically escape X-ray diffraction (XRD) and electron microscopy (EM), but are readily accessible to solid-state nuclear magnetic resonance (ssNMR). However, the current repertoire of ssNMR methods is not tailored to paramagnetic systems, where metal centers produce large perturbations in the spectrum of the surrounding nuclei and hamper the critical steps of the acquisition of the NMR experiments and the subsequent spectral assignment and interpretation. In this project, we will align modern multi-dimensional ssNMR experiments with ultra-fast magic-angle spinning (MAS). This includes complex radio-frequency irradiation schemes using amplitude and phase modulation, leveraging the unique instrumentation available at the host lab, allowing us to rotate the studied sample at 110,000 times per second or possibly faster. Supported by numerical spin-density-matrix analysis, we will develop a new toolbox of ssNMR methodologies to acquire high-resolution spectra of paramagnetic materials, and thus, precisely determining element-specific NMR parameters. Linking these spectroscopical features to the structure elements from known samples will finally allow us to present the comprehensive characterization of paramagnetic electrode materials, inaccessible by ssNMR to date.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-MSCA-2022-PF-01

See all projects funded under this call

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 211 754,88
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0