Objective
Over the past decades, modern photonics has evolved from a niche activity to a field of utmost scientific and economic importance. Strikingly, photonic devices ranging from lenses and fibres to complex machines such as lasers and microscopes rely almost exclusively on tailored interactions of light with solid matter. This fundamental principle imposes constraints, limiting e.g. the wavelength range of photonic devices due to absorption and the optical power due to damage.
In a ground-breaking effort, we recently opened up an entirely new route to transfer photonic methods from solids to the gas phase: using intense ultrasound (sono) waves, gases can be tailored to enable light control. Building on this pioneering work, I will consolidate a new research field: Gas-Phase Sono-Photonics. Within GASONIC, I will develop solid-state free light guiding concepts ranging from simple light deflection in density-modulated gases to all-gas-phase damage-immune sono-photonic waveguides shaped by intense acoustic waves. Gas-phase light deflectors will enable innovative ultrafast optical switches to modulate, sample and stack laser pulses approaching the terawatt regime. Sono-photonic fibres will enable a whole new field for guided optical wave control, complementing established wave-guiding concepts. Moreover, by providing a direct link between advanced optics and electronics mediated by gas phase acoustics, sono-photonic methods will open up new degrees of freedom for light control including adaptive control schemes leveraged by intelligent optimisation routines.
The proposed efforts will thus extend photonic methods into entirely new regimes, opening the door to adaptive light control at unprecedented power levels and in unexplored spectral regions. GASONIC thereby addresses key limitations in several fields including high-field physics, imaging, attosecond and accelerator sciences while prospectively opening new opportunities for fibre lasers and power-over-fibre methods.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences acoustics ultrasound
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2024-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
22607 HAMBURG
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.